Teaching Assistantship Positions 2017-2018

Teaching Assistantship applications for Aerospace courses are now being accepted for the 2017-2018 academic year. Applicants must apply now to be considered for any position that may arise during the 2017-18 academic year. Opportunities may become available for any course at any time.
Please complete the application form and submit it along with your CV, transcript (if required), and any other associated documents by 11:59 p.m., Friday August 4, 2017 to TAapplication@utias.utoronto.ca. Your submission must be a pdf file.

Qualifications, Duties, and Hours of Work

All applicants are expected to include an undergraduate transcript. Applicants who did not receive their B.A.Sc. from UofT Engineering are required to include scans or URL links for their course calendar descriptions (in English) for relevant courses. You will be contacted via email if an interview is required. Familiarity with the course content, progress of lectures and preparation of material for the respective course are the necessary requirements. Teaching assistants are required to supervise laboratory sessions and/or mark and grade reports, assignments, and notebooks as necessary, and assist in the examinations. The total duty time for AER201S is 75-95 hours per academic year, depending on the class size. For all other courses in the enclosed list, the total number of hours for each course is typically 35-75 hours, depending on the projected class size and marking/laboratory requirements. AER201S, AER210F, AER303F, AER372S, AER406S, AER407F, AER521S, AER525F and ROB301F require student contact time on the main campus.

The hourly rate of pay is $43.65 for the fall term and $43.65 (pending a new collective agreement) for the winter term for both graduate and undergraduate students. The rates are in accordance with the collective agreement between the University of Toronto and the Canadian Union of Public Employees, Local 3902 Unit 1 representing teaching assistants. First-time teaching assistants will be paid to attend a mandatory training session, typically during the beginning of the fall semester. Details of the training session will be posted in due course. Please note that should rates stipulated in the collective agreement vary from rates stated in this posting, the rates stated in the collective agreement shall prevail.

The University of Toronto is strongly committed to diversity within its community. The University especially welcomes applications from visible minority group members, women, Aboriginal persons, persons with disabilities, members of sexual minority groups, and others who may contribute to further diversification of ideas.
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Enrolment Estimate</th>
<th>Number & Type of Positions</th>
<th>Term of Appointment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AER210F</td>
<td>Vector Calculus & Fluid Mechanics</td>
<td>P. McCarthy, J.W. Davis</td>
<td>180</td>
<td>6 tutorial & 4 lab</td>
<td>September</td>
</tr>
<tr>
<td>AER301F</td>
<td>Dynamics</td>
<td>G. D’Eleuterio</td>
<td>80</td>
<td>2 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER303F</td>
<td>Aerospace Laboratory I</td>
<td>P. Lavoie</td>
<td>25</td>
<td>2 lab</td>
<td>September</td>
</tr>
<tr>
<td>AER307F</td>
<td>Aerodynamics</td>
<td>P. Lavoie</td>
<td>35</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER315F</td>
<td>Combustion Processes</td>
<td>O.L. Gulder</td>
<td>25</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER407F</td>
<td>Space Systems Design</td>
<td>C.J. Damaren</td>
<td>25</td>
<td>3 lab</td>
<td>September</td>
</tr>
<tr>
<td>AER501F</td>
<td>Advanced Mechanics of Structures</td>
<td>P.B. Nair</td>
<td>35</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER506F</td>
<td>Spacecraft Dynamics and Control</td>
<td>B. Vatankhahghadim</td>
<td>20</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER507F</td>
<td>Introduction to Fusion Energy</td>
<td>J.W. Davis</td>
<td>20</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER525F</td>
<td>Robotics</td>
<td>M.R. Emami</td>
<td>40</td>
<td>1 marking & 1 lab</td>
<td>September</td>
</tr>
<tr>
<td>ROB301F</td>
<td>Introduction to Robotics</td>
<td>G. D’Eleuterio</td>
<td>55</td>
<td>1 marking & 1 lab</td>
<td>September</td>
</tr>
<tr>
<td>ROB310F</td>
<td>Mathematics for Robotics</td>
<td>A.P. Schoellig</td>
<td>75</td>
<td>2 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER1216F</td>
<td>Fundamentals of UAVs</td>
<td>P. Grant</td>
<td>30</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER1316F</td>
<td>Fundamentals of CFD</td>
<td>D.W. Zingg</td>
<td>30</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER1410F</td>
<td>Topology Optimization</td>
<td>C.S. Steeves</td>
<td>25</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER1513F</td>
<td>State Estimation for Aerospace Vehicles</td>
<td>C.T. Barfoot</td>
<td>30</td>
<td>1 marking</td>
<td>September</td>
</tr>
<tr>
<td>AER201S</td>
<td>Engineering Design</td>
<td>M.R. Emami</td>
<td>180</td>
<td>15 lab</td>
<td>January</td>
</tr>
<tr>
<td>AER302S</td>
<td>Aircraft Flight</td>
<td>B. Haycock</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER304S</td>
<td>Aerospace Laboratory II</td>
<td>C.A. Steeves</td>
<td>25</td>
<td>2 lab</td>
<td>January</td>
</tr>
<tr>
<td>AER310S</td>
<td>Gas Dynamics</td>
<td>C.P.T. Groth</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER336S</td>
<td>Scientific Computing</td>
<td>M. Yano</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Instructor</td>
<td>Class Size</td>
<td>Marking & Lab</td>
<td>Schedule</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AER372S</td>
<td>Control Systems</td>
<td>H.T. Liu</td>
<td>80</td>
<td>1 marking & 2 lab</td>
<td>January</td>
</tr>
<tr>
<td>AER373S</td>
<td>Mechanics of Solids and Structures</td>
<td>C.A. Steeves</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER406S</td>
<td>Aircraft Design</td>
<td>P.R. Grant</td>
<td>25</td>
<td>3 lab</td>
<td>January</td>
</tr>
<tr>
<td>AER503S</td>
<td>Aeroelasticity</td>
<td>P.R. Grant</td>
<td>20</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER510S</td>
<td>Aerospace Propulsion</td>
<td>T. Wabel</td>
<td>20</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER521S</td>
<td>Mobile Robotics & Perception</td>
<td>T.D. Barfoot</td>
<td>80</td>
<td>2 marking & 2 lab</td>
<td>January</td>
</tr>
<tr>
<td>ROB501S</td>
<td>Computer Vision for Robotics</td>
<td>J. Kelly</td>
<td>60</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER1217S</td>
<td>Design of UAVs</td>
<td>H.T. Liu</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER1315S</td>
<td>Sustainable Aviation</td>
<td>D.W. Zingg</td>
<td>25</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER1403S</td>
<td>Advanced Aerospace Structures</td>
<td>C.A. Steeves</td>
<td>20</td>
<td>1 marking</td>
<td>January</td>
</tr>
<tr>
<td>AER1415S</td>
<td>Computational Optimization</td>
<td>P.B. Nair</td>
<td>40</td>
<td>1 marking</td>
<td>January</td>
</tr>
</tbody>
</table>

NOTE
1. The positions posted above are tentative, pending final course determinations, enrolments, and subsequent appointments.
2. The above positions are posted in accordance with the CUPE 3902 Collective Agreement.
Aerospace Science and Engineering
Aerospace and Robotics Major Course Descriptions for 2017-18 TA Positions

AER201H1 S Engineering Design 3/0.50/1.00/0.50

II-AEESCBASE
Design of integrated, multidisciplinary systems is introduced through a major course project. Project selection and definition of functions and performance objectives for the open-ended design problem will take place early on by teams of students, while learning practical subjects of engineering in lectures and workshops. This process will lead to the preparation of project proposals consisting of identification of design objectives and constraints, generation and evaluation of potential approaches, selection of the most promising design concept, identification of product subsystems, and assignment of responsibilities to team members. Following project approval, the design process will comprise preliminary design, followed by detailed design, prototype construction and testing, and preparation of a final design report. Progress is evaluated weekly, culminating in a prototype demonstration and design review.

Recommended Preparation: ESC102H1, CSC190H1 and ECE159H1

NOTE: AER201 includes a total of 33 hours of lecture. While there is 1 regular lecture hour per week, there are an additional 21 hours scheduled into the first 4 weeks of the course.

AER210H1 F Vector Calculus & Fluid Mechanics 3/0.50/2/0.50

II-AEESCBASE
The first part of this course covers multiple integrals and vector calculus. Topics covered include: double and triple integrals, derivatives of definite integrals, surface area, cylindrical and spherical coordinates, general coordinate transformations (Jacobians), Taylor series in two variables, line and surface integrals, parametric surfaces, Green’s theorem, the divergence and gradient theorems, Stokes’s theorem. The second part of the course provides a general introduction to the principles of continuum fluid mechanics. The basic conservation laws are derived in both differential and integral form, and the link between the two is demonstrated. Applications covered include hydrostatics, incompressible and compressible frictionless flow, the speed of sound, the momentum theorem, viscous flows, and selected examples of real fluid flows.

Prerequisite: MAT195H1
Corequisite: MAT292H1
Exclusion: CHE211H1, CHE221H1, CME261H1, CME270H1, MAT291H1 or MIE312H1
Recommended Preparation: PHY180H1

AER301H1 F Dynamics 3/-/1/0.50

III-AEESCBASE, III-AEESCBASEZ, I-AEENINRAM

Prerequisite: AER210H1, MAT185H1 and PHY180H1
Exclusion: MIE301H1

AER302H1 S Aircraft Flight 3/-/1/0.50

III-AEESCBASE, III-AEESCBASEZ
Basics of aircraft performance with an introduction to static stability and control. Topics covered include: Equations of Motion; Characteristics of the Atmosphere; Airspeed Measurement; Drag (induced drag, total airplane drag); Thrust and Power (piston engine characteristics, gas turbine performance); Climb (range payload); Turns; Pull-up; Takeoff; Landing (airborne distance, ground roll); Flight envelope (maneuvering envelope, gust load factors); Longitudinal and lateral static stability and control; Introduction to dynamic stability.

Prerequisite: AER307H1 and AER301H1

AER303H1 F Aerospace Laboratory I -1/-/0.15

III-AEESCBASE
Students will perform a number of experiments in the subject areas associated with the Aerospace Option curriculum, and prepare formal laboratory reports.

Corequisite: AER307H1

AER304H1 S Aerospace Laboratory II -1/-/0.15

III-AEESCBASE
Students will perform a number of experiments in the subject areas associated with the Aerospace Option curriculum, and prepare formal laboratory reports.

Corequisite: AER373H1

AER307H1 F Aerodynamics 3/-/1/0.50

III-AEESCBASE, III-AEESCBASEZ, IV-AEEMCBASC
Review of fundamentals of fluid dynamics, potential-flow, Euler, and Navier-Stokes equations; incompressible flow

Prerequisite: **AER210H1** or **MIE312H1**

AER310H1 S Gasdynamics

| Credits | 3/-1/0.50 |

III-AEESCBASEA

Basic introduction to compressible gasdynamics. Includes some fundamental thermodynamics, thermal and caloric equations of state, derivation of Euler’s equations by control volume approach. Also, includes the theory of steady flows in ducts with area changes, adiabatic frictional flows, duct flows with heat transfer, normal and oblique shock waves, Prandtl-Meyer expansion wave, moving shock and rarefaction waves, shock tubes, and wind tunnels. The lectures are supplemented by problem sets. Reference book: Anderson, J.D., Modern Compressible Flow with Historical Perspective.

Prerequisite: **AER307H1**

AER315H1 F Combustion Processes

| Credits | 3/-1/0.50 |

III-AEESCBASEA

Scope and history of combustion, and fossil fuels; thermodynamics and kinetics of combustion including heats of formation and reaction, adiabatic flame temperature, elementary and global reactions, equilibrium calculations of combustion products, and kinetics of pollutant formation mechanisms; propagation of laminar premixed flames and detonations, flammability limits, ignition and quenching; gaseous diffusion flames and droplet burning; introduction to combustion in practical devices such as rockets, gas turbines, reciprocating engines, and furnaces; environmental aspects of combustion.

Prerequisite: **CHE260H1**

Exclusion: **MIE1516H1**

AER336H1 S Scientific Computing

| Credits | 3/-1/0.50 |

III-AEESCBASEA, IV-AEESCBASEF, IV-AEESBASEF, III-AEESBASEZ

An introduction is provided to numerical methods for scientific computation which are relevant to the solution of a wide range of engineering problems. Topics addressed include interpolation, integration, linear systems, least-squares fitting, nonlinear equations and optimization, initial value problems, partial differential equations, and relaxation methods. The assignments make extensive use of MATLAB. Assignments also require knowledge of Fortran or C.

Prerequisite: **ESC103H1** and **MAT185H1**

AER372H1 S Control Systems

| Credits | 3/-1.50/1.0.50 |

III-AEESCBASEA, III-AEESCBASEJ, III-AEESCBASEZ

Prerequisite: **MAT185H1** and **MAT292H1**

Exclusion: **CHE322H1, ECE356H1** or **MIE404H1**

AER373H1 S Mechanics of Solids and Structures

| Credits | 3/-1/0.50 |

III-AEESCBASEA, III-AEESCBASEI

Prerequisite: **CIV102H1**

AER406H1 S Aircraft Design

| Credits | -/-/3.0.50 |

IV-AEESCBASEA

This course involves the detailed preliminary design of an airplane. Performance and mission specifications are given, as well as the engine’s characteristics. The class is divided into teams of three to four students who are guided to develop an airplane that can meet these specifications. Individual team members will specialize in areas such as “performance”, “structure”, “systems”, etc., although all team members should be conversant with each other’s results and methodology. Each week, a representative of each team presents a progress lecture on that team’s efforts, which is discussed and critiqued by the class. Also, the teams meet one-on-one with the professor and tutors to discuss specific design questions. At the end of the course each team will present a verbal and written report of sufficient detail to provide a compelling case for the feasibility of their proposed airplane. Text: Raymer, Daniel P., Aircraft Design: A Conceptual Approach, published by the AIAA.

Prerequisite: **AER302H1, AER307H1** and **AER373H1**
Introduction to the conceptual and preliminary design phases for a space system currently of interest in the Aerospace industry. A team of visiting engineers provide material on typical space systems design methodology and share their experiences working on current space initiatives through workshops and mock design reviews. Aspects of operations, systems, electrical, mechanical, software, and controls are covered. The class is divided into project teams to design a space system in response to a Request for Proposals (RFP) formulated by the industrial team. Emphasis is placed on standard top-down design practices and the tradeoffs which occur during the design process. Past projects include satellites such as Radarsat, interplanetary probes such as a solar sailer to Mars, a Mars surface rover and dextrous space robotic systems.

Prerequisite: AER373H1

Recommended Preparation: AER373H1

Introduction to the Finite Element Method and Structural Optimization.

Prerequisite: AER373H1

Recommended Preparation: AER373H1

Aeroelasticity

Static aeroelastic phenomena are studied, including divergence of slender wings and control reversal. Various methods of solution are considered such as closed form, matrix format iteration and the Rayleigh-Ritz approach. A Study of vibration and flutter of wings and control surfaces is presented with particular emphasis on those parameters which affect flutter speed.

Prerequisite: AER307H1 and AER501H1

**Planar “central force” motion; elliptical orbits; energy and the major diameter; speed in terms of position; angular momentum and the conic parameter; Kepler's laws. Applications to the solar system; applications to Earth satellites. Launch sequence; attaining orbit; plane changes; reaching final orbit; simple theory of satellite lifetime. Simple (planar) theory of atmospheric entry. Geostationary satellite; adjustment of perigee and apogee; east-west stationkeeping. Attitude motion equations for a torque-free rigid body; simple spins and their stability; effect of internal energy dissipation; axisymmetric spinning bodies. Spin-stabilized satellites; long-term effects; sample flight data. Dual-spin satellites; basic stability criteria; example-CTS. “active” attitude control; reaction wheels; momentum wheels; controlmoment gyros; simple attitude control systems.

Prerequisite: AER301H1 and AER372H1

Scope and history of jet and rocket propulsion; fundamentals of air-breathing and rocket propulsion; fluid mechanics and thermodynamics of propulsion including boundary layer mechanics and combustion; principles of aircraft jet engines, engine components and performance; principles of rocket propulsion, rocket performance, and chemical rockets; environmental impact of aircraft jet engines.

Prerequisite: AER310H1
The course addresses fundamentals of mobile robotics and sensor-based perception for applications such as space exploration, search and rescue, mining, self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, etc. Topics include sensors and their principles, state estimation, computer vision, control architectures, localization, mapping, planning, path tracking, and software frameworks. Laboratories will be conducted using both simulations and hardware kits.

Note: ROB310 will be a required prerequisite for AER521 in 2018-19.

Prerequisite: AER372H1

The course addresses fundamentals of analytical robotics as well as design and control of industrial robots and their instrumentation. Topics include forward, inverse, and differential kinematics, screw representation, statics, inverse and forward dynamics, motion and force control of robot manipulators, actuation schemes, task-based and workspace design, mobile manipulation, and sensors and instrumentation in robotic systems. A series of experiments in the Robotics Laboratory will illustrate the course subjects.

Prerequisite: AER301H1 and AER372H1

Exclusion: ECE470H1

Recommended Preparation: ESC103H1, MAT185H1, STA286H1 and MAT292H1

The course is intended to provide an introduction and a very interdisciplinary experience to robotics. The structure of the course is modular and reflects the perception-control-action paradigm of robotics. The course, however, aims for breadth, covering an introduction to the key aspects of general robotic systems, rather than depth, which is available in later more advanced courses. Applications addressed include robotics in space, autonomous terrestrial exploration, biomedical applications such as surgery and assistive robots, and personal robotics. The course culminates in a hardware project centered on robot integration.

Recommended Preparation: AER201H1
AER 1216H Fundamentals of UAVs
Lecture course
Unpiloted aircraft, known as UAVs, drones or aerial robots, are very quickly becoming a major sector of the aerospace industry. They are increasingly used in aerial photography, inspection of infrastructure, delivery of small packages and other applications requiring inexpensive and flexible flight. The basic physical, scientific and engineering principles necessary to design a remote-controlled fixed-wing or quad-rotor UAV are explained in this course. These include aerodynamics, propulsion, structures and control. A key part of this course will be a group project to create a detailed design of a UAV that is capable of performing a specific function.

AER 1217H Design of Autonomous UAVs
Lecture course
The course curriculum will be delivered in both lectures and development projects, including flight tests. The contents include: quadrotor or fixed-wing UAV dynamics and control; sensing and estimation for UAVs; navigation and path planning; instrumentation and sensor payloads; computer vision. A development project will be given to students who will use the UAV platform to design an autonomous system to accomplish a specific flying mission, to be demonstrated by flight experiments.

AER 1315H Sustainable Aviation
Lecture Course
This course will cover topics relating to the impact of aircraft on the environment, including noise, local and global emissions, and lifecycle analysis. Students will be exposed to means of quantitative assessment of the impact of aviation noise and emissions as well as metrics for assessing global climate effects. Current and future technologies for mitigating environmental problems will be covered.

AER 1316H Fundamentals of Computational Fluid Dynamics
Lecture Course
This course presents the fundamentals of numerical methods for inviscid and viscous flows. The following topics are covered: finite-difference and finite-volume approximations, structured and unstructured grids, the semidiscrete approach to the solution of partial differential equations, time-marching methods for ordinary differential equations, stability of linear systems, approximate factorization, flux-vector splitting, boundary conditions, relaxation methods, and multigrid.

AER 1403H Advanced Aerospace Structures
Lecture course
This course will provide instruction in three areas crucial to aerospace structural design: thin walled structures, fiber composite materials, and finite element methods. All three will be taught in a manner such that their interrelation is made clear. The course will be being with general theories of shells and thin walled structures, which are essential to aircraft design. Composite mechanics and fabrication will be addressed in the context of thin walled structures. Finally, finite element methods of use in modelling thin walled structures and composites will be described. No specific background in any of these three topics is required, but a good knowledge of solid and structural mechanics will be assumed.

AER 1410H Topology Optimization
Lecture course
Topology optimization is a relatively new method for the computational design of structures that enables optimal structural design beyond traditional size and shape optimization. Specifically, topology optimization identifies where to put material and where to put holes within the design domain. This course will examine the background to topology optimization, the theory and algorithms necessary to build a topology optimization code, and the two main approaches to topology optimization. At the conclusion of the course, students will be able to program a basic topology optimization code and use a common commercial software package.

AER 1415H Computational Optimization
Lecture course
This is an introductory graduate-level course on computational optimization and it is assumed that students have had undergraduate level training in multivariable calculus, linear algebra and MATLAB programming. The topics to be covered in this course include: formulation of optimization problems, non-gradient and stochastic search techniques, gradient-based optimization algorithms for unconstrained and constrained problems, numerical methods for sensitivity analysis, surrogate modeling, surrogate-assisted optimization frameworks, applications of optimization algorithms to design, parameter estimation and control.

AER 1513H State Estimation for Aerospace Vehicles
Lecture course
This course introduces the fundamentals of state estimation for aerospace vehicles. Knowing the state (e.g., position, orientation, velocity) of a vehicle is a basic problem faced by both manned and autonomous systems. State estimation is relevant to aircraft, satellites, rockets, landers, and rovers. This course teaches some of the classic techniques used in estimation including least squares and Kalman filtering. It also examines some cutting edge techniques for nonlinear systems including unscented Kalman filtering and particle filtering. Emphasis is placed on the ability to carry out state estimation for vehicles in three-dimensional space, which is complicated by vehicle attitude and often handled incorrectly. Students will have a chance to work with datasets from real sensors in assignments and will apply the principles of the course to a project of their choosing.