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Abstract Real-time onboard flight trajectory gener-

ation is of great importance for all kinds of vehicles.

This paper addresses trajectory generation for a trade-

off between minimum control effort and flight time. The

problem is formulated using a point mass model with

three forces acting on the body, namely thrust, drag

and gravity, which is a good model for quadrotor un-

manned aerial vehicles (UAVs). An analytical solution

is provided to generate the optimal trajectory for ar-

bitrary feasible boundary conditions. An approximate

solution is also derived for long-haul flights, which can

reduce the computational time. A characteristic param-

eter is proposed to decide whether the flight is long haul

or not so as to choose the type of solution: the analytic

or the approximate solution. The algorithm can com-

pute the trajectory either for a given flight time, or
for a free time. Moreover, the approach is extended to

respect peak velocity constraints. Examples show the

applicability of the proposed method.

Keywords optimal trajectory generation · minimum

control effort · real-time onboard computation

1 Introduction

This paper deals with vehicles that can hover in 3D

space, such as quadrotor UAVs. Europe has adopted

the Flightpath 2050 challenge demanding that by 2050,

90 percent of all the travelers are able to complete

their journey door-to-door within four hours. The vi-

sion also states that “the transport system must be

resilient against disruptive events and must be capa-

ble of automatically and dynamically reconfiguring the
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journey within the network if disruption occurs”[1]. A

similar concept took shape earlier in the USA named

SATS (Small Aircraft Transportation System), aiming

at dealing with the saturation of existing transporta-

tion systems [2]. For these aircraft, it is essential to be

able to generate or regenerate an optimal flight trajec-

tory in real-time.

Many trajectory generation methods have been devel-

oped, such as the sampling-based approach [3], arti-

ficial heuristic approach [4], geometry-based approach

[5], BADA model-based approach [6] and dynamic pro-

gramming [7], to name a few. To achieve a certain level

of abstraction, so as to provide beneficial robustness

in flight trajectory tracking, it is favorable to have a

double layered system, namely a Flight Management

System (FMS) as the upper level and a Flight Control

System (FCS) as the lower level. A FMS generates way-

points or continuous guidance and feeds them into the

FCS, whose task is to control the aircraft to track the

trajectory [8].

Applying optimal control theory to flight trajectory

planning dates back to the 1950s, starting with fixed-

wing aircraft and spacecraft orbits. The authors in [9]

investigated the fuel-optimal trajectory and summa-

rized existing dynamic models to formulate the prob-

lem. Reference [10] studied the minimal direct oper-

ating cost (DOC) trajectory, which is the sum of fuel

cost and time-related costs. References [8,11] solved the

DOC-optimal airspeed profiles for climb, cruise, and de-

scent phases for jet and all-electric aircraft, respectively.

The articles [12,13] studied the time-optimal trajectory

for quadrotors. Feasible ranges of the control inputs

were studied in [12]. Reference [14] tackled the minimal

acceleration trajectory for quadrotors in a 2D vertical
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plane. The work presented in [15] was on snap-optimal

trajectory. The research published in [16] studied the

minimal control effort trajectory in the vertical plane

with 1D drag. The study was performed for zero bound-

ary conditions only taking the pitch angle and thrust

as control inputs. It was claimed in the paper that a

completely analytical solution was not possible. The au-

thors in [17] investigated a similar problem even though

it was interpreted as the energy-optimal trajectory. A

second order drag model was considered and some con-

straints on states and control inputs were incorporated.

However, the problem was solved in 1D space. Unfortu-

nately, the 3D trajectory would not simply be the com-

bination of the three decoupled 1D trajectories. Similar

to [16], only the optimal control law was obtained in-

stead of an explicit solution of the optimal trajectory.

Reference [18] solved numerically the optimal trajectory

for a quadrotor UAV with 16 states. The objective of

our paper is to solve the optimal trajectory by trading-

off control effort and flight time. The benefits of the

result are threefold, 1) it implies a potential longer life-

time of the actuators and less maintenance cost, 2) it

implies less energy consumption since control effort is

directly related to energy consumption, 3) it might re-

quire less space and weight for the aircraft at an early

design stage.

Compared to the previous work in the literature, the

main contributions of this paper are as follows:

a) Analytically solving for a minimal control effort tra-

jectory for arbitrary boundary conditions, considering

linear drag. The approach can find the trajectory for

either a fixed time or a free time.

b) Proposing an approximate solution for long haul

flights to reduce the computational time. A characteris-

tic parameter is proposed to decide whether to use the

analytical solution or the approximation.

c) Extending the approach to verify peak velocity con-

straints.

The structure of this paper is as follows. Section 2

presents the problem formulation and the detailed solu-

tion of the optimal trajectory generation problem, in-

cluding the optimal trajectory and the optimal flight

time. Simulation results are presented in section 3. Con-

cluding remarks are stated in section 4.

2 Problem Formulation and Methodology

UAVs that can hover in 3D space have three types of

forces, namely gravity, thrust and drag. Since this paper

offers a conceptual framework for optimal trajectory

generation, other models can also be studied with the

methodology developed in this section.

2.1 Problem Description

Assume that an aircraft at current state x0 receives a

command to reach the destination xf at time tf . The

problem to be solved in this paper is to generate the tra-

jectory between x0 and xf that optimizes a functional

that trades off control effort and flight time. This op-

timal trajectory is to be found for both a fixed and a

free flight time.

To formulate and solve this problem we make the fol-

lowing assumptions:

1. The vehicle conserves its mass, or mass depletion

is sufficiently slow. Electric vehicles naturally fall into

this condition.

2. The drag is linear in the velocity written as

D = −kdv (1)

where D is drag, v is velocity, and kd is assumed to be

a constant for a given flight. For lower Reynold’s num-

bers (Re < 103), this is a reasonable assumption called

linear Stokes drag [23,24]. For higher Reynold’s num-

bers, it is just an approximation and valid only within

a small range in the neighborhood of the target velocity.

3. The wind effect and air density variation are ignored.

4. The only forces acting on the aircraft are thrust,

drag and weight.

2.2 Problem Formulation

Define the state vector x = [p1, p2, p3, v1, v2, v3]T , where

p is the vector of position coordinates, v is the vector

of velocity coordinates. The system dynamics are



ṗ1

ṗ2

ṗ3

v̇1

v̇2

v̇3

 =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





p1

p2

p3

v1

v2

v3

+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


a1

a2

a3

 (2)

T1

T2

T3

 = m

a1

a2

a3

+

0

0

g

+ kd

 v1

v2

v3

 (3)
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The optimal control problem is

J = min

∫ tf

0

1

2
TTT + CIdt

s.t. (2), (3)

x (t0) = x0

xf given

(4)

where CI is the ratio of cost of time and cost of control

effort. Define

λ =
∂J(x)

∂x
(5)

H = L(x, T ) + λT f(x, T ) (6)

where L(x, T ) = 1
2T

TT + CI and f(x, T ) is defined in

(2).The terms L,H are the running cost and the Hamil-

tonian, respectively. A detailed interpretation of analyt-

ical mechanics using the Lagrangian and the Hamilto-

nian can be found in [19]. The Pontryagin Maximum

Principle (PMP) is used to find the optimal control.

Further details on PMP and calculus of variations can

be obtained in references [21,22]. The necessary condi-

tions for a minimizer are

∂H∗

∂T
= 0 (7)

∂H∗

∂x
= −λ̇ (8)

2.3 3D trajectory solution

Theorem 1: The optimal flight trajectory is

p1

p2

p3

 =


−C1

k2
d
t− C4

2k2
d
e

kd
m t − C7m

kd
e−

kd
m t + C10

−C2

k2
d
t− C5

2k2
d
e

kd
m t − C8m

kd
e−

kd
m t + C11

−C3

k2
d
t− C6

2k2
d
e

kd
m t − C9m

kd
e−

kd
m t + C12

 (9)

where pi is the position, kd is the drag coefficient, m is

the mass, and


Ci

Ci+3

Ci+6

Ci+9

 =



−v0ik
2
d −

kd

2mCi+3 + Ci+6k
2
d

(pfi−p0i)+(vfi−v0i)
m
kd

−v0itf−
(vfi−v0i)tf e

kd
m

tf

e

kd
m

tf −1

tf
2mkd

(
e
kd
m

tf +1

)
− 1

k2
d

(
e
kd
m

tf −1

)
− (vfi−v0i)e

kd
m

tf

e
kd
m

tf −1
− e

kd
m

tf

2mkd
Ci+3

p0i + 1
2k2

d
Ci+3 + m

kd
Ci+6


(10)

for i = 1, 2, 3.

Proof: The Hamiltonian of (4) is,

H =
1

2
T 2 + λ1ṗ1 + λ2ṗ2 + λ3ṗ3 + λ4v̇1 + λ5v̇2 + λ6v̇3 + CI

=
1

2
(T 2

1 + T 2
2 + T 2

3 ) + λ1v1 + λ2v2 + λ3v3 + CI+

λ4

m
(T1 − kdv1) +

λ5

m
(T2 − kdv2) +

λ6

m
(T3 − kdv3 −mg)

(11)

From (7),

∂H∗

∂T
=

T1

T2

T3

+
1

m

λ4

λ5

λ6

 =

0

0

0

 (12)

T ∗ =
1

m
[−λ4,−λ5,−λ6]T (13)

H∗ = − 1

2m2
(λ2

4 + λ2
5 + λ2

6) + λ1v1 + λ2v2 + λ3v3

− kd
m

(λ4v1 + λ5v2 + λ6v3)− λ6g + CI

(14)

From (8),

∂H∗

∂p
=

0

0

0

 =

−λ̇1

−λ̇2

−λ̇3

 , ∂H∗

∂v
=

λ1 − kd

m λ4

λ2 − kd

m λ5

λ3 − kd

m λ6

 =

−λ̇4

−λ̇5

−λ̇6


(15)

[λ1, λ2, λ3]T = [C1, C2, C̄3]T (16)λ4

λ5

λ6

 =


C1m
kd

+ C4e
kd
m t

C2m
kd

+ C5e
kd
m t

C̄3m
kd

+ C6e
kd
m t

 = −m

T1

T2

T3

 (17)

From (3),

v̇ = a =
1

m


−C1

kd
− C4

m e
kd
m t − kdv1

−C2

kd
− C5

m e
kd
m t − kdv2

− C̄3

kd
− C6

m e
kd
m t − kdv3 −mg

 (18)

Define C3 as,

C3 = C̄3 +mgkd (19)

Integrating (18) and using (19) yields,

v =


−C1

k2
d
− C4

2mkd
e

kd
m t + C7e

− kd
m t

−C2

k2
d
− C5

2mkd
e

kd
m t + C8e

− kd
m t

−C3

k2
d
− C6

2mkd
e

kd
m t + C9e

− kd
m t

 (20)

Integrating (20), (9) is obtained.

The boundary conditions are,[
p(0)

v(0)

]
= x0,

[
p(tf )

v(tf )

]
= xf (21)
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After solving (21) using (9), (20), we get (10). We ob-

serve that the denominator of Ci+3 will never be zero.

To show this, let Q =
kdtf
m > 0, then the denominator

equal to zero is equivalent to Q(eQ +1)−2(eQ−1) = 0.

Since the derivative of the left-hand-side is (Q−1)eQ+1.

It is monotonically increasing, and when Q = 0, (Q −
1)eQ + 1 = 0. Therefore, Q(eQ + 1) − 2(eQ − 1) >

0(e0 + 1)− 2(e0 − 1) = 0. Q.E.D.

Theorem 2: The optimal cost for a given flight time

tf is

J∗ =

(
1

2
m2g2 + CI

)
tf−mg

[
C3

kd
tf +

C6

kd
(E(tf )− 1)

]
+

3∑
i=1

[
C2

i

2k2
d

tf +
C2

i+3

4kdm
(E(2tf )− 1) +

CiCi+3

k2
d

(E(tf )− 1)

]
(22)

where E(t) = e
kd
m t.

Proof: From (17), (19), we getT1

T2

T3

 =

 −C1

kd
− C4

m E(t)

−C2

kd
− C5

m E(t)

−C3

kd
− C6

m E(t) +mg

 (23)

By plugging (23) into the cost function in (4) and inte-

grating, expression (22) is obtained. Q.E.D.

Approximation 1: For longer tf , i.e. kd

m tf > 5, an

approximate solution is

pi = p0i + (vfi +
kd
m
lfi)t− lfiE(t− tf )+[

m

kd
(vfi − v0i) + lfi

]
(E(−t)− 1)

(24)

where i = 1, 2, 3, and

lf =
(pf − p0) +

(vf−v0)
kd

m− vf tf
kd

m tf − 2

= −mvf
kd

+
(pf − p0)− m

kd
(vf + v0)

kd

m tf − 2

(25)

J∗ =

(
1

2
m2g2 + CI +mgkdvf3 + gk2

dlf3

)
tf

− 2mgkdlf3 +

3∑
i=1

[
k2
d

2
tf

(
vfi +

kd
m
lfi

)2

+

k3
d

m
lf2

i − 2k2
dlfi

(
vfi +

kd
m
lfi

)] (26)

In fact, when kd

m tf > 5, the following hold,

E(tf ) > 100� 1 (27)

E(tf )± 1 ≈ E(tf ) (28)

One can then approximate Ci+3, for i = 1, 2, 3, as

Ci+3 =
(pfi − p0i) + (vfi − v0i)

m
kd
− vfitf(

tf
2mkd

− 1
k2
d

)
E(tf )

=
2k2

d

E(tf )
lfi

(29)

Then (10) becomes


Ci

Ci+3

Ci+6

Ci+9

 =


−k2

d(vfi + kd

m lfi)
2k2

d

E(tf ) lfi

−(vfi − v0i)− kd

m lfi
p0i − m

kd
(vfi − v0i)− lfi

 (30)

Using (30) in (9) yields (24). Plugging (30) into (22),

(26) is obtained. Accordingly, the new velocity profile

is

vi = (vfi +
kd
m
lfi)−

kd
m
lfiE(t− tf )−[

(vfi − v0i) +
kd
m
lfi

]
E(−t)

(31)

Remark 1: E(tf ) and lf are a scalar and a vector,

respectively, for a given set of boundary conditions and

flight time tf .

Remark 2: The condition for the approximation can

be loosen to kd

m tf > 3, so as to obtain an approxima-

tion error
E(tf )

E(tf )−1 ≈ 1.0524, meaning about 5% of rel-

ative error for this approximation when kd

m tf = 3. The

approximate trajectory will be shown in the next sec-

tion. When kd

m tf < 3, Theorem 1 and 2 have to be

applied. The optimal flight time tf is sought with nu-

merical methods for 1D optimization problems, such as

Golden Section Search, or Successive Parabolic Interpo-

lation [25], because there are over 20 terms in the cost

function, which makes the gradient based optimization

too expensive to analyze and solve. For kd

m tf > 3, the

optimal tf can be obtained with the following result.

Theorem 3: For the long haul flight approximation,

the optimal flight time tf is unique when the control

input in unbounded, and can be written as

tf =
m

kd

2 +
k2
d

m

√
|(pf − p0)− m

kd
(vf + v0)|2

m2g2 + 2CI

 (32)

Proof: For each fixed final time tf , an optimal cost is

obtained in (22) or (26), which can be regarded as a
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mapping from tf to J∗, i.e. J∗ = J∗(tf ). The optimal

tf satisfies ∂J∗

∂tf
= 0. Rewrite the term lf as

lf = −mvf
kd

+
(pf − p0)− m

kd
(vf + v0)

kd

m tf − 2
= A+

B

Z − 2

(33)

where A,B are two constant vectors, that are indepen-

dent of tf , and Z = kd

m tf . Then

vf +
kd
m
lf =

kd
m

B

(Z − 2)
(34)

Using this relation and recalling (26) and (33) yields

∂J∗

∂tf
=
kd
m

∂J∗

∂Z
(35)

∂J∗

∂Z
=

3∑
i=1

− k3
d

2m

B2
i

(Z − 2)2
+

(
m2g2

2
+ CI

)
m

kd
(36)

Since Z > 3, it is obvious that equation (36) has one

and only one admissible root. Therefore, J∗ has one and

only one minimizer on the right half plane. Set

∂J∗

∂tf
= 0 (37)

Solving (37) for tf yields

tf =
m

kd

2 +
k2
d

m

√ ∑3
i=1B

2
i

m2g2 + 2CI

 (38)

Therefore, (32) is proven. Q.E.D.

We define the characteristic parameter

CV =
3CD

4

ρair
ρcraft

dist

l
(39)

where CD is the drag coefficient, ρair, ρcraft is air den-

sity and effective aircraft density, respectively, dist is

the flight distance, and l is the aircraft length.

This parameter determines whether to use the theoret-

ical solution (CV < 3) or the approximation (CV ≥ 3).

Considering the smallest outer sphere surrounding the

hovering aircraft, the diameter of the sphere equals to

the aircraft length l. The volume of the sphere is 1
6πl

3 =
2
3Al, where A is the effective area of the outer sphere

surrounding the aircraft defined as A = 1
4πl

2. Define

the effective aircraft density ρcraft as mass divided by

the volume of the sphere. Choosing kd with average ve-

locity magnitude vavg, we expand the terms as

kd
m
tf =

1
2CDρairAvavgtf

ρcraftA
2
3 l

=
3CD

4

ρair
ρcraft

dist

l
(40)

Note that CD is a function of the Reynold’s number,

which is defined as

Re =
ρair
µ
vavgl (41)

For a given aircraft, kd

m tf is a function of the flying en-

vironment (atmosphere), estimated average speed, and

flight distance. Therefore, it can be regarded as a char-

acteristic parameter for the flight trajectory.

Theorem 4: There is at most one peak velocity during

flight.

Proof: R is the square of the velocity magnitude, and

can be obtained from (20) as

R = |v(t)|2 =

3∑
i=1

[
C2

i

k4
d

+
C2

i+3

4m2k2
d

E(2t) + C2
i+6E(−2t)

+
CiCi+3

mk3
d

E(t)− 2CiCi+6

k2
d

E(−t)− Ci+3Ci+6

mkd

]
(42)

Define,

a =

3∑
i=1

C2
i+3

4m2k2
d

≥ 0

b =

3∑
i=1

C2
i+6 ≥ 0

c =

3∑
i=1

CiCi+3

mk3
d

d =

3∑
i=1

−2CiCi+6

k2
d

e =

3∑
i=1

C2
i

k4
d

− Ci+3Ci+6

mkd

(43)

Then we have,

R = aW 2 +
b

W 2
+ cW +

d

W
+ e

W = E(t) ∈ [1, E(tf )]
(44)

The function R is differentiable on t since it is the sum-

mation of differentiable functions. Additionally, W is

monotonic on t without sign change, and is never zero.

Define the function Q as

Q =
∂R

∂W
W 3 = (2aW − 2b

W 3
+ c− d

W 2
)W 3

=
(
2aW 4 + cW 3 − dW − 2b

) (45)

Let Wm be the zero-crossing point of the function Q

from positive to negative values within the interval W ∈
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[1, E(tf )], which corresponds to the maximizer of the

function R. Therefore, the peak value of R during the

flight is found as

max(R) = max (R(1), R(E(tf )), R(Wm)) (46)

The following two cases are possible:

1. a = 0.

Then we have Ci+3 = 0, i ∈ {1, 2, 3}, so that c = 0, and

then Q = −dW − 2b. Since −2b ≤ 0, there is no zero-

crossing point of function Q from positive to negative

values within the interval W ∈ [1, E(tf )]. An example

is shown in Fig. 1a. The single peak velocity will there-

fore occur at either W = 1 or W = E(tf ).

2. a 6= 0.

The function Q is a quartic function. Only when Q

has four distinct real roots, there are two zero-crossing

points in the direction from positive to negative values.

An example is shown in Fig. 1d. Otherwise, there is

at most one zero-crossing point from positive to nega-

tive values, for example in Fig. 1b and Fig. 1c. Assume

there are two maximizers in W > 0. Note that we must

have Q(0) > 0 because Q decreases on the left of the

first root. Since Q(W = 0) = −2b ≤ 0, we obtain a

contradiction. Therefore, there must be at most one

maximizer in W > 0. Q.E.D.

(a) Function Q for case 1
(b) Function Q for case 2,
two simple roots

(c) Function R for case 3, two
simple roots and one double
root

(d) Function R for case 4,
four distinct roots

Fig. 1: Curves of function R for all cases

Remark 3: A proposed solution to find the feasible

flight time tf which verifies the peak velocity constraint

is to find the shortest time such that max(R) ≤ V 2
max.

3 Simulation Results

Two cases are studied in this section, one being a smaller

electric rotorcraft, the other being a bigger manned

electric helicopter. Their kd is calculated with a coeffi-

cient of drag CD chosen from reference [23] assuming

that they are rough spherical objects and with vavg ob-

tained by dividing distance with time. In Fig. 4, the

dotted line is the trajectory from Theorem 1, while the

crossed line is the approximate solution from Approxi-

mation 1.

3.1 Case 1: Smaller rotorcraft

Let x0 = [−1.5, 0, 1, 1, 0,−1]T and xf = [10, 2, 5, 0, 2, 0]T .

Taking the DJI Phantom 4 Pro [27] as an example,

m = 1.388kg, l = 0.35m,CD = 0.3, CI = 10. The air

density ρair = 1.225kg/m3 is chosen from reference [26]

at sea level. The parameter CV = 0.15716� 3. In this

case, Theorem 1 and 2 have to be used. The optimal

flight time is tf = 2.6813s. Fig. 2 shows the optimal 3D

trajectory and the corresponding velocity, acceleration,

thrust, position and cost over time. The final position

error is 1.819e−12m, i.e., it is a factor of 1.4742e−13

of the whole distance of 12.3390m, merely because of

roundoff error. The velocity stays well within range un-

der the upper limit of 20m/s. The velocity peak and val-

ley of acceleration in the middle are caused by the rela-

tively low boundary velocities. The thrust takes values

between 13 ∼ 23N . The final cost is 355.8. The Pareto

trade-off curve of this flight is depicted in Fig. 3, which

illustrates the tradeoff between the flight time and con-

trol effort, and indicates that a larger CI leads to a

shorter flight time and higher control effort.

3.2 Case 2: Larger manned helicopter

Let x0 = [−1.5, 0, 10, 30, 5, 3]T and

xf = [17810, 26370, 3645, 4, 32, 0]T . Taking the Sikorsky

Firefly [28] as an example, m = 930kg, l = 2.54m,CD =

0.3, CI = 10. The air density ρair = 1.0251kg/m3 is

chosen from reference [26] at the middle altitude of the

two boundary points. The parameter CV = 26.8335 >

3, so Approximation 1, Theorem 3 and 4 can be used.

The optimal flight time is tf = 736.3338s. Fig. 4 shows

the optimal 3D trajectory and the corresponding ve-

locity, acceleration, thrust, position and cost over time.

The lines of the exact solution and the approximate one

match well with each other, meaning that the approx-

imate solution can represent the exact solution with

minor errors. The calculation is much faster for the ap-

proximate solution. The final position error is 1.99e−09m,
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Fig. 2: Optimal trajectory for smaller rotorcraft.

Fig. 3: Pareto trade-off of CI

i.e., it is a factor of 6.2269e−14 of the whole distance of

32028.73m. The acceleration plot shows that the trajec-

tory has a peak value of less than 1.5m/s2. The thrust

magnitude is slowly varying and the cost is approxi-

mately linear as a function of time. For this long haul

example, a cruise-like phase appears during the flight.

4 Conclusions

In this paper, we presented a complete analytical solu-

tion of the optimal trajectory generation problem trading-

off control effort and flight time. The approach allows

arbitrary boundary conditions, and both fixed and free

flight times. An approximate solution for long haul flights

was derived so as to reduce the computational time. A

characteristic term was proposed to determine whether

to use the analytical solution or the approximation.

The method was extended to respect peak velocity con-

straints.
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