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Abstract - The primary objective of this study is to explore novel applications of data-driven machine learning 

methods for isolation of nonlinear systems with a case-study for an in-orbit closed-loop controlled satellite with 

reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are developed to provide an 

abundance of data for both healthy and various faulty conditions of the satellite. This data is then used as input 

for the proposed data-driven fault isolation method. Once a fault is detected, the fault isolation module is acti-

vated where it employs a machine learning technique which incorporates ensemble methods involving random 

forests, decision trees, and nearest neighbors. Results of the classified faulty condition are then cross-validated 

using k-fold and leave-one-out methods. A comprehensive comparison of the performance of different combina-

tions for the ensemble architecture. Results show promising outcomes for fault isolation of the non-linear sys-

tems using ensemble methods. 

Keywords: Attitude determination and control system (ADCS), fault detection and isolation (FDI), spacecraft, 

satellite, ensemble machine learning, reaction wheel 

1 Introduction 

With the ever-growing number of complex systems, the cost of maintenance is rapidly increasing. In addition, 

the transition from larger systems to smaller interconnected units dictates less available space on each for hard-

ware redundancy and calls for alternative solutions. Projections indicate as many as 2,600 nano/microsatellites 

will require launch over the next five years. Furthermore, annual nano/microsatellite launches have grown by 

over 200% in the last five years [1]. This growth requires advanced monitoring systems that can compensate for 

the lack of redundancy in hardware due to smaller designs. With the projections above for the next 5 to 10 years, 

it is evident that advances in analytical redundancy along with diagnosis, prognosis, and health monitoring 

frameworks can help adopt the emerging technology and safeguard its progression. With the recent increase in 

spacecraft development projects worldwide, and accessibility for launch vehicle procurement, the need for relia-

ble satellite subsystem Assembly, Integration and Test (AIT) methods become crucial for mission success. One 

such satellite subsystem, the Attitude Determination & Control System (ADCS), is critical to satellite operation 

across various mission types. ADCS stabilizes and aligns the satellite to the desired vector during the mission 

cycle using sensors to determine attitude and actuators to control orientation, despite external torque disturb-

ances [2]. Conventional satellite actuators include reaction wheels (RW), magnetorquers (MT), and control 

moment gyroscopes (CMG).   

Due to the importance of ADCS on satellites, any sub-component malfunction in orbit would jeopardize the 

success of the mission. As a result, there is a great incentive to develop and improve fault detection and isolation 
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(FDI) methods for ADCS. For general complex systems, there has been increasing attention utilizing FDI meth-

ods in industries such as nuclear engineering [3], chemical engineering [4], automotive engineering [5] and wind 

turbine engineering [6]. Unlike the various earth-based engineering applications, satellites must operate in an 

environment where human intervention is minimized. Hence, it is beneficial that satellites are retrofitted for 

autonomous and intelligent data processing, failure mode classification, and recovery methods.  

Many techniques have been proposed to solve the issue of proper FDI implementation in complex systems and 

ADCS on satellites. FDI methods are commonly categorized into two concepts, model-based [7],[8], and data-

driven. As spacecraft design increase in complexity, highly accurate models of components may not be feasible, 

thus a model-based FDI method would not outperform alternative approaches. There are efforts shown by re-

searchers using data-driven FDI methods for satellite ADCS and sophisticated systems. In [9], a learning-based, 

decision tree (DT) approach is demonstrated. In [10], five fault classifiers were utilized for gas turbine engines: 

Support Vector Machine (SVM), the nearest neighbor classifier (K-NN), probabilistic neural network (PNN), 

Gaussian mixture models (GMM), and principal component analysis (PCA). 

It has been shown in previous research that ensemble machine learning techniques complemented with specific 

classifier methods have proven effective for their applications. The novelty this work presents is the use of 

ensemble learning techniques for ADCS FDI on satellites. The case study explored in this paper uses a controls 

model of a RW to generate training datasets for the proposed ensemble machine learning algorithm.  

The remainder of this paper is organized as follows: in Section 2, the problem at hand is formally presented. In 

Section 3, the methodology employed to solve the problem is explained. In Section 4, the case study used to 

evaluate the performance of the proposed methodology is detailed. Section 5 provides a preliminary finding of 

the study, and Section 6 concludes the paper with closing remarks and future work recommendations. 

2 Problem Definition 

In this section, the problem of fault diagnosis in components of a general nonlinear system is formally stated. 

Consider the following nonlinear system described in discrete-time state space representation: 

𝛺: {

𝜉𝑘+1 = 𝑓(𝜉𝑘, 𝑢𝑘, 𝜃𝑘, 𝑤𝑘
𝜉

)

𝜃𝑘+1 = 𝜃𝑘 + 𝑤𝑘
𝜃

𝑦𝑘 = 𝑔(𝜉𝑘 , 𝜃𝑘) + 𝑣𝑘

 (1)   

where 𝜉𝑘 ∈ ℝ𝑛 is the state vector at time step 𝑘, 𝑢𝑘 ∈ ℝ𝑚 is the control input vector, 𝜃𝑘 ∈ ℝ𝑙 is the system 

parameter vector, 𝑦𝑘 ∈ ℝ𝑚 is the measurement vector, 𝑤𝑘
𝜉

∈ ℝ𝑛 is the additive process noise for states, 𝑤𝑘
𝜃 ∈

ℝ𝑙 is the additive process noise for parameters, 𝑣𝑘 ∈ ℝ𝑚 is the additive measurement noise. 𝑓(∙) is a nonlinear 

process model, and 𝑔(∙) is a nonlinear measurement model where in the case of full state measurement 𝑦𝑘 =

𝜉𝑘 + 𝑣𝑘 is considered. 

The objective is to design and develop a data-driven FDI scheme that is capable of autonomously isolating the 

location of faults in the system under the following assumptions: Assumption (i). The control signal and the state 

vector remain bounded prior to and after a fault. Assumption (ii). There are no fault occurrences from the incep-

tion of a fault to its isolation. Assumption (iii). Fault severity changes are ‘‘slow’’ compared to the system out-

put dynamics. Assumption (iv). All additive noises in the system are bounded and of white Gaussian form. 

In this paper, it is assumed that the system component faults are reflected as changes in the physical system 

parameters [11]. Therefore, detecting changes in system parameters can be representative of faults in the system. 

The faulty system can be described as in Eq. (1) also known as multi-parameter fault model with:  
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𝜃𝑘 = 𝜃0 + 𝛼𝑘 (2)   

where 𝜃0 ∈ ℝ𝑙 is the nominal parameter values vector and 𝛼𝑘 ∈ ℝ𝐿 is the fault parameter vector containing L 

fault elements. The fault model given by Eq. (2) enables one to state the problem of nonlinear fault diagnosis in 

the form of an on-line nonlinear parameter tracking problem. Furthermore, a single-parameter fault model, as 

described below, can be defined for fault isolation. Consider the multi-parameter fault model given by Eq. (2) 

with 𝐿 fault parameters. One can extract 𝐿 single-parameter models, Ω𝑖 , 𝑖 = 1, … , 𝐿, from the model in Eq. (2) as 

follows [11]: 

𝛺𝑖: {𝜃𝑘
𝑖 = 𝜃0

𝑖 + 𝛼𝑘
𝑖             𝑖 = 1, … , 𝐿. (3)   

The goal of the data-driven algorithm is then set to classify the current state of the system as one of the possible 

𝐿 faulty cases, once a fault is detected by employing each single-parameter fault model in Eq. (3), where the 𝑖th 

parameter model will essentially represent the 𝑖th system parameter 𝜃𝑘
𝑖  and consequently its fault parameter, 

namely 𝛼𝑘
𝑖 . 

3 Methodology 

This section provides details of the proposed methodology to address the abovementioned problem. The soft-

ware was developed in Python with the use of Scikit-learn, a python package for machine learning, which built 

the ensemble machine learning classifier. 

3.1 Data Preprocessing 

For the machine learning algorithm to accurately differentiate the various fault scenarios, proper time domain 

features are generated as the input matrix for the training set, as opposed to raw time series data. These features 

all derive from the residual time series, 𝑟 ∈ ℝ𝑁×6, generated from the difference between the nominal and faulty 

as 

𝑟 = [ (𝑞𝑘,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 − 𝑞𝑘,𝑓𝑎𝑢𝑙𝑡𝑦) (𝜔𝑖,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 − 𝜔𝑖,𝑓𝑎𝑢𝑙𝑡𝑦) ] (4)   

where 𝑁 represents the number of data points in the time domain of a given scenario dataset. The residual ma-

trix only contains the first three quaternion values in the output dataset, as the fourth quaternion is dependent on 

the three and thus invaluable as a feature. Therefore, the residual matrix defines 𝑘 ∈ ℕ, 𝑘 = 1,2,3. 

The residual matrix is then used as the input for various time domain feature functions, described in Table I 

[12]. The time domain features used are as follows: 

Table I – List of features used for data-preprocessing in 𝑋𝑠𝑒𝑡 [12] 

Feature Equation Feature Equation 

Mean 

(𝑟̅) 
𝑟̅ =

1

𝑛
∑ 𝑟𝑖

𝑖

𝑛=1

 
Peak 

(𝑟𝑝) 
𝑟𝑝 = max (𝑟𝑖) 

Root Mean Square 

(𝑟𝑟𝑚𝑠) 
𝑟𝑟𝑚𝑠 =  √

1

𝑛
∑ 𝑟𝑖

2

𝑛

𝑖=1

 
Standard Deviation 

(𝑟𝑠𝑡𝑑) 
𝑟𝑠𝑡𝑑 = √

1

𝑛 − 1
∑(𝑟𝑖 − 𝑟̅)2

𝑛

𝑖=1

 

Skewness 

(𝑟𝑠𝑘𝑒𝑤) 
𝑟𝑠𝑘𝑒𝑤 =

∑ (𝑟𝑖 − 𝑟̅)3𝑛
𝑖=1

(𝑛 − 1)𝑟𝑠𝑡𝑑
3  

Kurtosis 

(𝑟𝑘𝑢𝑟) 

 

𝑟𝑘𝑢𝑟 =
∑ (𝑟𝑖 − 𝑟̅)4𝑛

𝑖=1

(𝑛 − 1)𝑟𝑠𝑡𝑑
4  

Mead Absolute Deviation 

(𝑟𝑚𝑎𝑑) 
𝑟𝑚𝑎𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑖|)   
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These generated residual properties will act as the feature matrix, 𝑋𝑠𝑒𝑡 ∈  ℝ𝑆×36, for a given dataset correspond-

ing to a fault scenario 

𝑋𝑠𝑒𝑡 = [𝑟̅ 𝑟𝑝 𝑟𝑟𝑚𝑠 𝑟𝑠𝑡𝑑  𝑟𝑠𝑘𝑒𝑤  𝑟𝑘𝑢𝑟  𝑟𝑚𝑎𝑑] (5)   

where S is the size of the samples, in this case, 4800 (16 scenarios × 300 datasets per scenario). The target value 

matrix, 𝑌𝑠𝑒𝑡 ∈ ℕ, corresponds to the given dataset’s fault scenario. 

The 𝑋𝑠𝑒𝑡 and 𝑌𝑠𝑒𝑡 are split into an 80:20 test and train set, where the entire set 80% (3840 datasets) is used for 

training and 20% (960 datasets) are used for testing. This splitting of the dataset yields four new sets: 𝑋𝑡𝑟𝑎𝑖𝑛,

𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑟𝑎𝑖𝑛,  𝑌𝑡𝑒𝑠𝑡. 

3.2 Ensemble Machine Learning Classifiers 

Various machine learning classifiers were chosen for comparison with ensemble machine learning methods, 

both to verify proper implementation and analyze result accuracies. Specifically, the methods utilized for FDI 

include Adaboost Random Forest (RF), Adaboost Decision Tree (DT), k-Nearest Neighbors (k-NN), and Multi-

layer Perceptron (MLP) neural network.  

The RF classifier is given n training subsets and trains several decision tree classifiers with a random subset of 

features. Each tree then tries to predict the outcome, and averaging is used to compensate for the bias. DT clas-

sifiers create a tree with decision nodes, iteratively developed with data subsets with the goal of a prediction 

output at the node with the least cross-validated error. DT hyperparameters were kept to default values in the 

scikit-learn library. AdaBoost is a meta-classifier that enhances the RF and DT classifiers, done by calculating 

the weighted error rate of incorrectly estimated outcomes and iteratively adjusts the weight of corresponding 

trees in the ensemble. The RF hyperparameters were selected as follows: The number of trees in the forest is set 

to 200, the maximum depth is set to 5, and the number of features to consider when looking for the best split is 

set to √𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠.  

The k-nearest neighbors is an instance-based classification algorithm, where classification is based on majority 

voting of the nearest neighboring points relative to a given point, where 𝑘 is the number of neighbors to find for 

voting. The number of neighbors to use was set as 𝑘 = 3. Multilayer perceptron neural network is a subset of 

feedforward artificial neural networks, consisting of an input layer, N hidden layers, and an output layer. The 

MLP optimizes the log loss function, a measure of the predicted probability divergence from the actual input, 

using the stochastic gradient-based optimizer. MLP hyperparameters were kept to default values in the scikit-

learn library. Principal Component Analysis (PCA) was also utilized to reduce the dimensionality of the data 

into 3 dimensions, in order to visually represent the data for human interpretation and aiding in algorithm de-

bugging and diagnostics (see Figure 3). 

4 Case study 

To evaluate the performance of the proposed FDI, an attitude control subsystem (ACS) of a three-axis stabilized 

satellite is considered where actuator components experience faults. 

4.1 Satellite attitude 

The attitude dynamics of a rigid body satellite controlled by reaction wheels can, in general, be described by the 

following nonlinear differential equation: 

𝐽𝜔̇𝐵𝐼
𝐵 = −𝜔𝐵𝐼

𝐵 × (𝐽𝑠𝜔𝐵𝐼
𝐵 + 𝐴𝐽𝑤𝜔𝑅𝑊) − 𝐴𝜏𝑅𝑊 + 𝜏𝑒 (6)  
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where 𝜔𝐵𝐼
𝐵 ∈ ℝ3×1 is the angular velocity of the spacecraft relative to the inertial frame expressed in the body 

frame. 𝜏𝑒 ∈ ℝ3×1 is the external torque. 𝐴 ∈ ℝ3×4 maps the influence of the actuators to the principal axes of 

the spacecraft. 𝐽 is defined as 𝐽 = 𝐽𝑠 − 𝐴𝐽𝑤𝐴𝑇 where 𝐽𝑠 ∈ ℝ3×3 is the moment of inertia of the spacecraft includ-

ing the actuators. 𝐽𝑤 ∈ ℝ4×4 = 𝑑𝑖𝑎𝑔([𝐽𝑤1, 𝐽𝑤2, 𝐽𝑤3, 𝐽𝑤4]) denotes the axial moment of inertia of each reaction 

wheel. 𝜔𝑅𝑊 ∈ ℝ4×1 denotes the axial angular velocity of the reaction wheels. It should be noted that for the rest 

of this work, 𝜔𝑅𝑊 is represented without its subscript simply as 𝜔, not to be confused with the satellite angular 

velocities that have sub and superscripts. 𝜏𝑅𝑊 is the torque generated by RWs. 

The kinematic equations for the spacecraft using quaternions can be formulated as 

[
𝑞̇𝑣

𝑞̇4
] =

1

2
[
𝑞4𝐼 + 𝑞𝑣

×

−𝑞𝑣
𝑇 ] 𝜔𝐵𝐿

𝐵  (7)    

where 𝑞̅ = [𝑒̅ sin (
Φ

2
) cos (

Φ

2
)⁄ ] = [

𝑞𝑣

𝑞4
] is unit quaternion, Φ denotes the principal angle, 𝑒̅ = [𝑒1, 𝑒2, 𝑒3]𝑇is the 

principal axis from Euler’s theorem (𝑒1
2 + 𝑒2

2 + 𝑒3
2 = 1). 𝑞4 ∈ ℝ and 𝑞𝑣 ∈ ℝ3×1 = [𝑞1, 𝑞2, 𝑞3]𝑇 denote the Euler 

parameters representing the spacecraft body frame orientation with respect to the orbital frame where 𝑞𝑣
𝑇𝑞𝑣 +

𝑞4 = 1. 𝐼 ∈ ℝ3×3 is the identity matrix and 𝑞𝑣
× is the skew-symmetric matrix of the quaternion vector.  

To assess the performance of the proposed FDI scheme, based on the above model, a highly accurate simulation 

of a three-axis stabilized satellite has been developed. The simulation model consists of the above nonlinear 

satellite attitude dynamics, a high-fidelity nonlinear model of the reaction wheel [13] and a sliding mode con-

troller (SMC) that is designed to stabilize the satellite. Figure 1 depicts the block diagram of the closed-loop 

representation of the ACS subsystem that has been simulated in this section. 

4.2 Actuators 

The selection of reaction wheels (RWs) for attitude control is well justified due to their popularity in active-

satellite-attitude-control. The reaction wheels considered in this work are ITHACO ‘type A’ reaction wheels that 

are currently being manufactured by Goodrich Corporation. A high fidelity nonlinear model of the reaction 

wheel has been obtained from Bialke [13] and has been integrated into the ACS dynamics. This high-fidelity 

model is also required for enhancing the robustness of the FDI scheme proposed in this work with respect to 

modeling errors. The nonlinear model of the RW, including discontinuous functions approximated with sig-

moidal functions, can be expressed as follows [14]:  

𝐼𝑅̇𝑊 = 𝐺𝑑𝜔𝑑[𝑓3(𝜔, 𝐼𝑅𝑊) − 𝑓5(𝜔)] − 𝜔𝑑𝐼𝑅𝑊 + 𝐺𝑑𝜔𝑑𝑉𝐶𝑜𝑚𝑚 

𝜔̇𝑅𝑊 =
1

𝐽𝑤

{𝑓1(𝜔) + 𝑘𝑡𝐼𝑅𝑊[𝑓2(𝜔) + 1] − 𝜏𝑣𝜔 − 𝜏𝑐𝑓4(𝜔) + 𝜏𝑛𝑜𝑖𝑠𝑒} 
(8)  

where 𝑓1 and 𝑓2 account for motor disturbances, 𝑓3 accounts for the EMF torque limiting block, 𝑓4 accounts for 

the analytical approximation of the sign function in the Coulomb friction block, 𝑓5 represents the speed limiter 

block, and 𝑉𝐶𝑜𝑚𝑚 is the torque command voltage, which is input from the controller [8]. 

4.3 Controller 

To obtain the desired attitude of 𝑞𝑑 ∈ ℝ4×1 and 𝜔𝑑 ∈ ℝ3×1, a simplified version of a nonlinear sliding mode 

controller is adapted from [15] with the quaternion tracking error is defined as 

𝑞𝑒 = 𝑞𝑑4𝑞𝑣 − 𝑞4𝑞𝑑𝑣 + 𝑞𝑣
×𝑞𝑑𝑣 

qe4 = 𝑞𝑑4𝑞4 + 𝑞𝑑𝑣
𝑇 𝑞𝑣 

(9)  

where 𝑞𝑒
𝑇𝑞𝑒 + 𝑞4𝑒

2 = 1. The corresponding rotation matrix 𝐶𝑒 = 𝐶(𝑞𝑒 , 𝑞4𝑒) is given by 

𝐶𝑒 = (𝑞4𝑒
2 − 𝑞𝑒

𝑇𝑞𝑒)𝐼 + 2𝑞𝑒𝑞𝑒
𝑇 − 2𝑞4𝑒𝑞𝑒

× (10)  
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where 𝐶𝑒
𝑇𝐶𝑒 = 1, ‖𝐶𝑒‖ = 1, det(𝐶𝑒) = 1, 𝐶𝑒̇ = −𝜔𝑒

×𝐶𝑒, and 𝐼 is the identity matrix. Next, the relative angular 

velocity 𝜔𝑒 ∈ ℝ3×1 is defined as follows 

𝜔𝑒 = 𝜔𝐵𝐿
𝐵 − 𝐶𝑒𝜔𝑑 (11)  

Given these error terms, the sliding manifold is defined as 

𝜎 = 𝜔𝑒 + 𝜆𝑠𝑔𝑛(𝑞4𝑒)𝑞𝑒 (12)  

where 𝜆 > 0 is the sliding gain and 𝑠𝑔𝑛(𝑞4𝑒) is the sign function for 𝑞4𝑒. The required control command is then 

obtained from 

𝑢𝑟 = −𝜂𝐴𝑇
𝜎

‖𝜎‖
  (13)  

with 𝜂 defined as 

𝜂 = 𝑝0 + 𝑝1‖𝑋‖ (14)  

where 𝑝0 and 𝑝1 are known as positive constants, and 𝑋 ∈ ℝ6×1 = [𝑞𝑣, 𝜔𝐵𝐿
𝐵 ]𝑇. With the required control com-

mand (𝑢𝑟) and actuator dynamics available, it is possible to calculate the simplified required input to the actua-

tors adapted from [15] as 

𝑉𝑐𝑜𝑚𝑚 = 𝑅𝑎𝐾𝑡
−1𝑢𝑟 (15)  

In this work, all control parameters 𝜆, 𝑝0, and 𝑝1 are equal to 1 based on values given in [15] and validated sim-

ulation results. It is important to note that the controller outputs are bounded to ±5 𝑉 due to the saturation limits 

on the RWs [13]. 

 
Figure 1 Proposed FDII simulation setup 

4.4 Fault formulation 

Four identical reaction wheels are used in a three-axis stabilized satellite. A standard four-wheel reaction wheel 

assembly is considered for this study. A central hierarchical FDI unit is considered for health monitoring of the 

whole system. The simulation data are obtained from closed-loop ACS simulation of a three-axis stabilized low 

earth orbit (LEO) satellite. Transient time-varying faults are injected into two of the reaction wheel components, 

namely motor current, and bus voltage. Faults in the motor current are modeled and injected as variations in 

motor torque gain 𝑘𝑡. Faults in the bus voltage are modeled and injected as drops in the voltage of the power bus 

𝑉𝑏𝑢𝑠. Consequently, the two fault parameters are defined. In other words, the multi-parametrized fault model is 

obtained by replacing 𝑉𝑏𝑢𝑠,𝑗  with 𝑉𝑏𝑢𝑠,𝑗0
+ 𝛼𝑗

1, and replacing 𝑘𝑡,𝑗 by 𝑘𝑡,𝑗0
+ 𝛼𝑗

2 where 𝑗 is the index for the reac-

tion wheel unit among the four units considered in this case study and 𝛼𝑗
𝑖 are unknown fault parameters that 

indicate the possible presence of faults in the bus voltage and motor current of each wheel. Due to the additive 

form of the fault parameters introduced above, the value for 𝛼𝑗
𝑖 in the healthy condition would be zero and at 

any given time, the deviation from zero for any of these fault parameters could potentially be an indicator of the 
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severity of the fault and its size. It is important to note that the fault is introduced in the actuator non-measurable 

parameters; however, in the fault isolation, only system satellite outputs namely 𝑞 and 𝜔 are monitored for 

faulty behavior. 

4.5 Fault scenario 

To calculate the total number of combinations for a four-wheel RW assembly, we use combination theory, and it 

sums up to 16 unique combinations. To be able to refer to each combination (fault scenario) more conveniently, 

all possible cases are assigned with a number in Table II where the faulty-wheel number is defined in Figure 2 

for each RW assembly configuration. 

Table II - Fault scenarios for RW assemblies 

Scenario No. Faulty Wheels Scenario No. Faulty Wheels 

0 None 8 2,3 

1 1 9 2,4 

2 2 10 3,4 

3 3 11 1,2,3 

4 4 12 1,2,4 
5 1,2 13 1,3,4 
6 1,3 14 2,3,4 
7 1,4 15 1,2,3,4 

 

   
Figure 2 RW assembly of standard four-wheel configuration 

4.6 Dataset Structure 

The data is structured in input format for dataset generation as listed in Table III. 

Table III - Fault scenarios for RW assemblies 

Index Description Possible values Unit 

1 Fault Scenario 0-15 integer 
2 Kt in fault 0/1 binary 
3 Vbus in fault 0/1 binary 
4 Kt inception time 0-60 sec 
5 Vbus inception time 0-60 sec 
6 Kt fault duration 0-20 sec 
7 Vbus fault duration 0-20 sec 
8 Kt severity 0.029 Nm/A 

9 Vbus severity 4-8 Volt 

For every single simulation, a set of items in Table III are inputted in the MATLAB simulation  for the closed-

loop system, and the output of the simulation is stored in an output format as presented in Table IV. 
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Table IV - Fault scenarios for RW assemblies 

Item Unit Description 

time [sec] the time in simulation starting from 0 with increments of 0.1 

𝑞𝑖ℎ𝑒𝑎𝑙𝑡ℎ𝑦
 [] the nominal quaternion parameter 𝑖 for satellite 

𝜔𝑖ℎ𝑒𝑎𝑙𝑡ℎ𝑦
 [rad/sec] the nominal angular speed for the satellite around 𝑖 (x,y,z) axis  

𝐼𝑅𝑊𝑖 ℎ𝑒𝑎𝑙𝑡ℎ𝑦
 [A] the nominal current of 𝑅𝑊𝑖 onboard satellite  

𝜔𝑅𝑊𝑖 ℎ𝑒𝑎𝑙𝑡ℎ𝑦
 [rad/sec] the nominal angular speed of flywheel of 𝑅𝑊𝑖 onboard satellite  

𝑞𝑖𝑓𝑎𝑢𝑙𝑡𝑦
 [] the faulty quaternion parameter 𝑖 for satellite 

𝜔𝑖𝑓𝑎𝑢𝑙𝑡𝑦
 [rad/sec] the faulty angular speed for the satellite around 𝑖 (x,y,z)  axis  

𝐼𝑅𝑊𝑖𝑓𝑎𝑢𝑙𝑡𝑦
 

[A] the faulty current of 𝑅𝑊𝑖 onboard satellite  

𝜔𝑅𝑊𝑖𝑓𝑎𝑢𝑙𝑡𝑦
 

[rad/sec] the faulty angular speed of flywheel of 𝑅𝑊𝑖 onboard satellite  

This data is then used as input for training and test of the proposed fault isolation machine learning algorithm. 

5 Results and discussion 

In order to achieve a baseline acceptable accuracy score, many alterations were made to the algorithm to simpli-

fy the case study. The following changes were made to achieve a reasonable accuracy score:  

1. half of the total generated dataset was used to increase algorithm runtime,  

2. only scenarios 0-4 were analyzed to determine functional baseline fault identification,  

3. residual data timeframe was determined from known fault inception time and duration  

4. the fault severities were set to a constant value if a fault occurred to reduce effects of fault severity de-

viation 

Table V presents the output of the various machine learning classifier, comparing the accuracy scores of the 

predicted test dataset scenarios, 𝑦𝑝𝑟𝑒𝑑 to the actual scenario, 𝑦𝑡𝑒𝑠𝑡. 

Table V - Classifier Method and corresponding 𝒚𝒑𝒓𝒆𝒅 to 𝒚𝒕𝒆𝒔𝒕 accuracy scores 

Classifier Method Accuracy Score 

k-Nearest Neighbor 37.16% 

Multilayer Perceptron Neural Network 38.51% 

Adaboost Decision Tree 52.03% 

Adaboost Random Forest 58.78% 

The confusion matrix for the Adaboost RF classifier is  

 

Table VI - Confusion Matrix for Adaboost RF 𝒚𝒑𝒓𝒆𝒅 vs 𝒚𝒕𝒆𝒔𝒕 

𝒚𝒑𝒓𝒆𝒅 𝒚𝒕𝒆𝒔𝒕⁄  0 1 2 3 4 

0 29 2 1 1 1 

1 2 17 1 5 5 

2 2 0 15 4 5 

3 3 2 1 14 9 

4 4 4 3 6 12 

Based on the results of Adaboost RF, it is evident that for the given dataset provided, the proposed ensemble 

method would improve the classification of ADCS fault scenario. However, a classifier accuracy score of ~59% 

is not suitable for ADCS FDI, as most machine learning applications aim to achieve an accuracy score of 95-

99%. There are several hypotheses as to why the methodology failed to produce reliable scenario predictions: 



9 

1. There are not enough distinguishable features in the 𝑋𝑠𝑒𝑡 for the classifier to determine the scenario ac-

curately 

2. The residual time series, 𝑟, does not contain enough sets that exhibit relevant deviations caused by 

faults meaning that the data-driven approach may require more sets other than 𝑞𝑖 and 𝜔𝑖 

3. The hyperparameters were not selected based on hyperparameter optimization methods 

 

 

(a) 

 

(b) 
Figure 3 PCA 3D 𝑋𝑡𝑟𝑎𝑖𝑛 values colored by (a) actual scenario number (b) predicted scenario number 

6 Conclusion 

In this study, the application of employing the ensemble methods to classify faults in a nonlinear system was 

explored. A 3-axis controlled satellite was simulated to generate data for pre-processing of the machine learning 

methods employed. The residual was generated as the difference between the nominal and faulty output, and the 

results as a time-series output were transformed into a time-domain feature-space, used to extract unique distin-

guishers between different scenarios. k-Nearest Neighbor, Multilayer Perceptron Neural Network, Adaboost 

Decision Tree and Adaboost Random Forest were employed as the methods of choice for the classification of 

the data set. The classification of the dataset resulted in an accuracy of ~59% for Adaboost Random Forest, the 

highest of the classification methods explored. 

Future work on this ADCS FDI application is to be done to increase the accuracy score to acceptable levels for 

confident application. Diagnosing the issues outlined in the discussion section of this study would the first line 

of actions in that direction. The inclusion of all scenarios and fault severities would follow, optimizing the clas-

sifier hyperparameters to increase the prediction accuracy of all scenarios and fault types. Once accomplished, 

the proposed ensemble FDI would lend invaluable analytical redundancy and health-monitoring capabilities to a 

host of non-linear systems and would particularly be useful in space applications where hardware redundancy is 

limited and direct access to system components is costly. 

7 References 

[1] Doncaster, B., Williams, C., and Shulman, J., 2018 Nano/Microsatellite Market Forecast, 8th Edition, 

Atlanta, GA: 2018 

[2] Larson, J. R. W. W. J., Space Mission Analysis and Design, Space Technology Library/Microcosm 

Press, 2005 

[3] Zhang, Q., An, X., Gu, J., Zhao, B., Xu, D., and Xi, S., “Application of FBOLES-a prototype expert 

system for fault diagnosis in nuclear power plants,” Reliability Engineering and System Safety, 1994, 



10 

doi: 10.1016/0951-8320(94)90015-9 

[4] Nimmo, I., “Abnormal situation management,” Proceedings of the Industrial Computing Conference, 

1995 

[5] Isermann, R., Schwarz, R., and Stölzl, S., “Fault-tolerant drive-by-wire systems,” IEEE Control Systems 

Magazine, 2002, doi: 10.1109/MCS.2002.1035218 

[6] Simani, S., Castaldi, P., and Tilli, A., “Data-driven approach for wind turbine actuator and sensor fault 

detection and isolation,” IFAC Proceedings Volumes (IFAC-PapersOnline), 2011 

[7] Rahimi, A., Kumar, K. D., and Alighanbari, H., “Enhanced Adaptive Unscented Kalman Filter for 

Reaction Wheels,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 2, Apr. 2015, 

pp. 1568–1575, doi: 10.1109/TAES.2014.130766 

[8] Rahimi, A., Kumar, K. D., and Alighanbari, H., “Fault estimation of satellite reaction wheels using 

covariance based adaptive unscented Kalman filter,” Acta Astronautica, Vol. 134, May 2017, pp. 159–

169, doi: 10.1016/j.actaastro.2017.02.003 

[9] Barua, A., Sinha, P., and Khorasani, K., “A diagnostic tree approach for fault cause identification in the 

attitude control subsystem of satellites,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 

45, No. 3, Jul. 2009, pp. 983–1002 

[10] Donat, W., Choi, K., An, W., Singh, S., and Pattipati, K., “Data Visualization, Data Reduction and 

Classifier Fusion for Intelligent Fault Diagnosis in Gas Turbine Engines,” Journal of Engineering for 

Gas Turbines and Power, 2008, doi: 10.1115/1.2838993 

[11] Sobhani-Tehrani, E., Talebi, H. A., and Khorasani, K., “Hybrid fault diagnosis of nonlinear systems 

using neural parameter estimators,” Neural Networks, Vol. 50, Feb. 2014, pp. 12–32, doi: 

10.1016/j.neunet.2013.10.005 

[12] Park, D., Kim, S., An, Y., and Jung, J.-Y., “LiReD: A Light-Weight Real-Time Fault Detection System 

for Edge Computing Using LSTM Recurrent Neural Networks,” Sensors, Vol. 18, No. 7, Jun. 2018, p. 

2110, doi: 10.3390/s18072110 

[13] Bialke, B., “High Fidelity Mathematical Modeling of Reaction Wheel Performance,” 1998 Annual AAS 

Rocky Mountain Guidance and Control Conference, Advances in the Astronautical Sciences, 

Breckenridge, CO: 1998, pp. 483–496 

[14] Sobhani-Tehrani, E., and Khorasani, K., “Identification For Nonlinear Systems Using Hybrid 

Approach,” Master’s Thesis, 2008, pp. 12-13,15,18,37,92 

[15] Kumar, K. D., Godard, Abreu, N., and Sinha, M., “Fault-tolerant attitude control of miniature satellites 

using reaction wheels,” Acta Astronautica, Vol. 151, No. May, Oct. 2018, pp. 206–216, doi: 

10.1016/j.actaastro.2018.05.004 

 


