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Abstract: Thermoacoustic instability problems are widely existed in many real world applications 

such as gas turbines, rocket motors etc. A Rijke tube is a typical thermoacoustic system, and it is 

difficult to analyze such a system due to the nonlinearity and time delay. In this paper, a set of 

nonlinear ordinary differential equations with time delay which represent a Rijke tube system will 

be studied. The state space of such a tube system is consisted of velocity and pressure, and the 

periodic motion can be discretized based on an implicit mid-point scheme. Through Newton-

Raphson method, the node points on the periodic motion will be solved, and the analytical solution 

of such a periodic motion for Rijke tube system can be recovered using a set of Fourier 

representations. According to the theory of discrete maps, the stability of the periodic motion will 

be obtained. Finally, specific system parameters will be adopted in order to carry out numerical 

studies to show different periodic motions for such a tube system. The analytical bifurcations 

which show how period-1 motion involves to period-m motion and then becomes chaos will be 

demonstrated. With such a technique, some interesting nonlinear phenomenon will be explained 

analytically, which will be of great help to understand and control such a Rijke tube system. 
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1. Introduction 

In the 1800s, Rijke [1] found that an open-ended vertical tube could produce loud 

sound by placing hot metal gauze in the lower half, and such a tube is now named 

as Rijke tube. But he did not explain why hot gauze in the upper half of the tube 

did not produce sound. Rayleigh [2] explained the phenomena observed by Rijke, 

and a criterion was proposed for the development of heat-driven oscillations. For 

vertical Rijke tube, it is difficult to use for quantitative testing due to the acoustic 

coupling. In 1964, Friedlander et al. [3] studied the horizontal Rijke tube, and the 

sound pressure level varying with relative heater position for different tube length 

was discussed experimentally. Bisio and Rubatto [4] designed a feedback control 

system to achieve the active control of noise for a horizontal Rijke tube. In 2008, 

Balasubramanian and Rujith [5] modeled the heat release rate of the heating 
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element for Rijke tube using a modified form of King’s law, and algebraic growth 

of oscillations was induced by the non-normality of the thermoacousitc system. 

For horizontal Rijke tube, the governing equations for the fluid flow are too stiff 

to be solved through computational fluid dynamics due to the small Mach number 

of the steady flow and the small thickness of the heat source. The numerical 

model for horizontal Rijke tube was proposed in [6]. Then Mariappan and Sujith 

[7] used Galerkin method to simulate the acoustic zone and CFD technique to 

model the hydrodynamic zone. It showed that the bifurcation results were 

different with and without the global-acceleration term. Juniper et al. [8] studied a 

horizontal Rijke tube model with radius of the upstream and downstream ducts 

varied, the perturbation method was adopted to obtain the solutions of such a 

system and weakly nonlinear analysis has been carried out. For such a Rijke tube 

system with strong nonlinearity, it is difficult to calculate the solution analytically 

since traditional analytic methods for nonlinear system are only valid for weak 

nonlinear problems. Generalized harmonic balance method [9] is an ideal tool for 

getting the approximate solutions which correlate with numerical simulation very 

well for strong nonlinear systems, and it can also deal with nonlinear dynamical 

system with time-delayed term [10]. However, it will take a great effort to derive 

the equations for such a Rijke tube model, since the degrees of freedom could be 

high when more mode shapes have been included [11]. The discrete implicit maps 

method [12] is a newly developed technology for solving various dynamical 

systems with strange nonlinear terms. With such a method, Wang and Huang [13] 

gave an analytical solution for periodic motions for a damped mobile piston 

system in a high pressure gas cylinder with P control, and there was no 

computational error to calculate the bifurcation points since the dimension of the 

Jocobian matrix did not increase with the truncated order of harmonics for 

periodic solution increases. Guo and Luo [14] adopted the discrete implicit maps 

method to investigate the parametrically driven pendulum for which the nonlinear 

term is a triangular function, and the complex bifurcation diagrams of analytic 

solutions for periodic motions were presented. For time-delayed systems, Luo and 

Xing [15] studied the periodically forced hardening Duffing oscillator with time 

delay through the discrete implicit method, and the time-delay effects on period-1 

to chaos for such a dynamical system have been discussed. 
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In this paper, a horizontal Rijke tube with periodical acoustic source will be 

studied. The acoustic momentum and energy equations for such a Rijke tube will 

be converted into a set of ordinary differential equations through Galerkin 

transformation. The time-delayed effect will be introduced due to the heat release 

rate fluctuations of the heat source for such a horizontal Rijke tube. The periodic 

motion will be discretized into a finite number of node points with constant time 

interval, and one node point maps to another one based on implicit midpoint 

scheme. The time-delayed term will be represented by the normal states due to the 

periodicity, and the node points can be solved through Newton-Raphson method. 

From the node points, the analytic solution of periodic motion will be recovered 

using a set of finite Fourier series. Then the harmonic amplitudes varying 

amplitude of periodic acoustic excitation will be illustrated. Some numerical 

simulations will be given to discuss the dynamic behaviors of such a horizontal 

Rijke tube with periodical acoustic source. 

2. Model and Semi-Analytic Method 

For a horizontal Rjike tube, the governing equations can be given in Eqs. (1) and 

(2) by assuming that the system is symmetric, Mach number of the mean flow is 

small, and a perfect open-open acoustic boundary condition at both ends of the 

tube. 
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    

       (2) 

where 'u  and 'p  are the non-dimensional acoustic velocity and pressure, 

respectively; x  is the non-dimensional axial distance measured from the inlet; t  

is the non-dimensional time; M  is the Mach number of the steady state flow;   

is the adiabatic index;   is the damping coefficient; K  is the non-dimensional 

heater power. The subscript f means the position of heater inside the Rijke tube. 

Therefore, the Dirac delta function at the right-hand-side of Eq. (2) indicates that 

the heat effect only exists at the location of the heater. 

Represent velocity and pressure by Fourier series, and it gives 
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Then substitute Eqs. (3) and (4) into Eqs. (1) and (2), and perform the Galerkin 

transform. Then the aforementioned partial differential equations becomes 
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             (6) 

In Ref. [16], the damping coefficient  for i
th

 mode is expressed as 

2
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Then Eq. (6) can be rewritten as 
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Introduce a periodic excitation into the system, equation (8) then becomes 
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NP P Py , then Eqs. (5) and (9) can be 

written in the matrix form as 
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where 
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For a period-m motion of such a horizontal Rijke tube, the trajectory is discretized 

into mL partitions. The mapping Pk (k = 0, 1,…, mL-1), which maps from one 

node point with state vector 
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( )k kt t x x , ( )k kt t y y  and 2 / ( )h L  .                  

Due to the periodicity, it has 0 mLx x  and 0 mLy y . Categorize the node points 

into a single set, one have 

0 0 1 1 1 1{ , , , , , , }T

mL mL z x y x y x y                  (16) 

To solve those node points z, one gives the initial approximations z*. Rearrange 

Eqs. (12) and (13), and it gives 
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Define  10 20 11 21 1 2, , , , , ,
T

L Lg g g g g g g , and put such initial approximates into 

Eqs. (17) and (18) to calculate g* for the first iteration. According to Newton-

Raphson algorithm, the increment of the approximations for the next iteration can 

be obtained as 

*

*
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g
z g
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Then the approximates for the next iteration can be obtained as z** = z* + Δz, 

and the iteration terminates until ε z  where  is the preset convergence 

criterion. 

For the k
th

 node point, the velocity 
' ( )f ku t  and pressure 

' ( )f ku t  at the position of 

heater can be computed with Eqs. (3) and (4). The analytic solution of velocity 

and pressure at the position of heater for period-m motion for such a horizontal 

Rijke tube can be represented by 
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The amplitude for the lth order of harmonic for the velocity and pressure at the 

position of heater then can be calculated as 

(1) 2 2

/ 1 / 1 /l m l m l mA b c   and 
(2) 2 2

/ 2 / 2 /l m l m l mA b c             (23) 

3. Simulation and Discussions 

In this section, the specific system parameters are chosen, which are tabulated in 

Table 1. In the simulation, only the first mode shape for the velocity and pressure 

is included, and the frequency of the excitation is assumed as  = 1.2. Figure 1 

gives the bifurcation diagram of velocity and pressure at the heater for such as 

horizontal Rijke tube by varying the amplitude of excitation from 0 to 4. The 

steady-state response is periodic and the period is one period of excitation when 

the amplitude of excitation is greater than 1.736. The steady-state response 

suddenly becomes chaotic as the amplitude of excitation continues to decrease. In 

order to understand how chaotic motion for such a Rijke tube model forms as the 

amplitude of excitation decreases, the zoomed plots for velocity and pressure are 

illustrated in Figs.1(c) and (d). It can be found that the period-1 motion jumps to 

another period-17 motion at  = 1.736, and then it becomes chaotic at  = 1.72. 

Table 1 System parameters for Horizontal Rijke Tube 

Parameter Symbol Value 

c1 0.1 

c2 0.06 
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(c)  

(d)  

Fig. 1 Bifurcation for Rijke tube by varying excitation amplitude Q1: (a) 

velocity at the heater, (b) pressure at the heater, (c) zoomed plot for velocity 

and (d) zoomed plot for pressure. 

In Fig.2, the plots of node points of velocity and pressure at the heater varying 

excitation amplitude at the phase t = 0, 2/, 4/ … which are obtained by 

discrete implicit maps method are shown. The analytic solution of period-1 

motion exists in the range of Q1 = [0, 4]. The harmonic amplitudes of velocity 

and pressure for period-1 motions varying excitation amplitude are 

demonstrated in Figs.3 and 4, respectively. For harmonic amplitude of velocity 
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which is shown in Fig.3, the constant term is non-zero which indicates that 

average value of velocity oscillation is not zero for Q1 = [0, 4]. It increases 

from zero at first, and then it drops around Q1 = 1.8. The first order of harmonic 

increases almost linearly as the amplitude of excitation increases. For the higher 

harmonics, the quantity levels of (1)

2A  and (1)

3A  are both 10
-2

, and the 

amplitude is almost zero when the excitation amplitude is small. When the 

order continues to increase, the range for which the harmonic amplitude is close 

to zero increases. For harmonic order increases to 10, the quantity level of 

harmonic amplitude decreases to 10
-4

. The quantity level of harmonic 

amplitude of pressure also drops asymptotically with the order of harmonic 

increases which is illustrated in Fig.4. But for constant term of pressure at the 

heater, a02 is always zero. 
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(b)  

Fig. 2 Node points of period-1 motion at phase t = tmod(k, L) (k = 0, 1, 2…) 

varying excitation amplitude Q1: (a) velocity at the heater, (b) pressure at the 

heater. 
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(e) (f)  

(g) (h)  

(i) (j)  

(k) (l)  

Fig. 3 Harmonic amplitude varying excitation amplitude Q1 for velocity at 

heater: (a) constant term a01, (b)-(l) (1)

kA  (k = 1, 2,…, 10). 
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(k) (l)  

Fig. 4 Harmonic amplitude varying excitation amplitude Q1 for pressure at 

heater: (a) constant term a02, (b)-(l) (2)

kA  (k = 1, 2,…, 10). 

For the analytical solution z  which is obtained from discrete implicit maps 

method, the numerical simulation can be carried out with initial conditions from 

the analytical solution z  of period-1 motion for Rijke tube. For the numerical 

simulation with Q1 = 1.73 which is shown in Fig.5, the initial velocity and 

pressure at the heater are chosen as ' -0.334259fu  , ' 0.00653288fp  , 

respectively. In the phase plane, the solid curve is the numerical simulation. 

The green filled circle is the initial position, and the blue hollow circles are the 

time delayed information before t = 0. The red fork symbols are the analytical 

solution. For the first 20 periods, the trajectory from numerical simulation 

sticks to analytical solution of period-1 motion which is plotted in Figs.5(a)-(c). 

From Fig.1, the steady-state response for Q1 = 1.73 is a period-17 motion. In 

order to investigate how motion involves from period-1 motion to period-17 

motion, the Poincare maps of numerical simulation for Q1 = 1.73 from 0 to 100 

periods, from 100 to 200 periods, and from 300 to 400 periods are drawn in 

Figs.5(d)-(g), respectively. It can be seen that the motion sticks on the orbit of 

period-1 solution for the first 100 periods, and then it gradually leaves that 

orbit. After hundreds of periods of transient process, it runs to the stable period-

17 orbit after 300 periods of simulation time. 
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(a)   

(b) (c)  

(d) (e)  

(f)  (g)  

Fig. 5 Numerical simulation for Q1 = 1.73 (
' -0.334259fu  , 

' 0.00653288fp 

at t = 0): (a) phase plane, (b) time trajectory of velocity, (c) time trajectory of 

pressure for the first 20 periods; (d) Poincare map for 0 – 100 periods, (e) 

Poincare map for 100 – 200 periods (f) Poincare map for 200 – 300 periods, (g) 

Poincare map for 300 – 400 periods. 
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For Q1 = 2.00, the stable period-1 motion is simulated with initial velocity and 

pressure at the heater ' -0.380952fu  , ' -0.0124891fp  , which is 

demonstrated in Fig.6. The numerical simulation correlates with the analytical 

solution very well, and it never leaves such an orbit. In Figs.6(d) and (e), the 

harmonic amplitudes of velocity and pressure are shown. The quantity level of 

harmonic amplitude of velocity drops to 10
-6

 when the order increases to 20. 

But the harmonic amplitude of pressure drops slower as the order of harmonic 

increases, and quantity level still stays around 10
-6

 as k → 50. 
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Fig. 6 Numerical simulation for Q1 = 2.00 ( ' -0.380952fu  , ' -0.0124891fp 

at t = 0): (a) phase plane, (b) time trajectory of velocity, (c) time trajectory of 

pressure, (d) harmonic amplitudes of velocity, (e) harmonic amplitudes of 

pressure. 

4. Conclusions and future work 

In this paper, the analytic solution of periodic motion for a horizontal Rijke 

tube model with periodic excitation has been obtained through discrete implicit 

approach. The procedures to discretizing the periodic motions and solving for 

the analytic solutions have been described in details. The analytic solutions of 

period-1 motion varying excitation amplitude have been presented. It shows 

that the solution of period-1 motion is continuously exists in the range of Q1 = 

[0, 4], and no coexisting solution has been found in such a range. But for 

numerical bifurcation, it is known that period-1 motion disappears when the 

excitation amplitude continues to decrease at the critical point Q1 = 1.736. By 

carrying out numerical simulation at Q1 = 1.73 and 2.00, both the analytic 

solution before and after such a critical point should be exact, since the 

numerical prediction with initial conditions computed from the analytic 

solution of period-1 motion correlate with the analytic solution very well for the 

first many periods. For Q1 = 2.00, the motion always sticks to the period-1 

orbit. By observing the motion involving process using the Poincare map, it can 

be found that the motion stick with the analytic solution of period-1 motion for 

the first 100 periods, and then it runs to the orbit of perid-17 motion after 300 

periods. It might be because the analytic solution of period-1 motion for such a 

horizontal Rijke tube is unstable for Q1 < 1.736. Therefore, one have to 

continue to find out the way to determining the stability of periodic motion for 

such a Rijke tube which time-delay terms are included in the model in the 

future. 
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