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Abstract Low thrust spacecraft propulsion systems en-

able fuel efficient trajectories through space but the re-

sulting trajectory optimization problems can be challeng-

ing. Such problems often use direct collocation methods

for transcribing the optimal control problem into a non-

linear programming problem. In this paper the Hermite-

Legendre-Gauss-Lobatto (HLGL) and the Legendre-

Gauss Pseudospectral (PS) direct collocation methods

have been compared for a minimum time low thrust

Earth to Mars transfer problem. Various metrics that

describe the computational cost as well as the errors

with respect to a reference trajectory have been used.

For the HLGL method, the number of subintervals (m)

and the order of the interpolating polynomial (n), can

be varied such that the number of nodes (N) stays

constant. This paper analyzes the distribution of the
number of such (m,n) pairs using the concept of divisor

functions from number theory and develops an algorithm

for determining all the possible combinations for any

N value. In addition, a method is presented by which

the Edelbaum trajectory is used to set bounds, scale

the problem, and generate a suitable initial guess. The

primary contribution of this paper involves a detailed

comparison of the performance of all the HLGL pairs

with the PS method for nodes in the range N = 6 to
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1 Introduction

Low thrust electric propulsion for spacecraft provides a

fuel efficient mode of transportation in space. Because

of the high specific impulses of these engines, they have

been used for a variety of missions with the first inter-

planetary spacecraft to use this technology being Deep

Space I [4]. The primary challenge with the optimization

of low thrust trajectories is due to the large search space

caused by the continuous thrusting, the non-Keplerian

nature of the orbits, and the long mission durations.

As with high thrust trajectory optimization, a suitable

initial guess to an optimization algorithm is required

in order to obtain a converged solution. An effective

method of generating these initial guesses is through

the use of shape-based methods that use functions with

limited parameters to model a family of low thrust tra-

jectories [17,24,22]. To satisfy the equations of motion

and the boundary conditions, different systems of equa-

tions corresponding to each shape-based method need

to be solved. Petropoulos and Longuski [16] developed

the four-parameter exponential sinusoid model to ap-

proximate near-planar low thrust trajectories. Research

by Wall and Conway [23,24] developed an inverse poly-

nomial model that can be used for a three-dimensional

rendezvous mission with up to a 15◦ inclination change

with a specified starting and ending time. In addition,

based on the work by Edelbaum [7], we have expressions

for a minimum time coplanar circle to circle transfer
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with a constant low tangential thrust, for which the

terminal phase cannot be specified [6]. Shape-based

methods are useful for rapidly searching large areas of

the feasible set, which can reduce computational times

for problems such as gravity assist optimization [13].

Once an estimate of an optimal trajectory has been

found using a shape-based method, it can be supplied

as an initial guess to a direct transcription method for

finer optimization [16].

Direct transcription methods, also called direct col-

location methods, convert the optimal control problem

into a Nonlinear Programming (NLP) problem through

transcription onto a discrete set of points in the time

domain. Compared to the calculus of variations based

indirect methods, direct methods do not require the

derivation of the first order necessary conditions and

are less sensitive to the initial guess [3]. These methods

can be further divided into global collocation meth-

ods and local collocation methods. Global collocation

methods use an approximating function over the en-

tire time interval. An area of active research involves

a class of methods known as Pseudospectral methods,

which have been generally used as a global method

[20]. These methods use orthogonal basis polynomials

to approximate the state and control and use orthog-

onal collocation points to achieve accurate quadrature

approximations. For smooth problems, pseudospectral

methods have the property of spectral, or exponential,

convergence [21]. Garg et al. [9] have compared the

Legendre-Gauss-Lobatto (LGL), Legendre-Gauss (LG),

and Legendre-Gauss-Radau (LGR) variants of the Pseu-

dospectral method in depth and developed the transfor-

mations between the Karush-Kuhn-Tucker multipliers

of the NLP problem and the costates of the continu-

ous problem. Local collocation methods break the time
interval into segments and within each of these seg-

ments, piecewise functions are used to approximate the

state and control histories. A well known method is the

Hermite-Simpson method where within each segment,

cubic polynomials are used to approximate the state and

linear functions are used to approximate the controls.

Herman and Conway [12] have compared the perfor-

mance of direct collocation methods that use higher

order Gauss-Lobatto quadrature rules. Williams de-

veloped a framework known as the Hermite-Legendre-

Gauss-Lobatto (HLGL) method for higher odd-ordered

Gauss-Lobatto rules [27]. This method avoids the de-

tailed analytical derivation of the constraints needed

in the work by Herman and Conway [12] and takes a

generalized matrix based approach.

Numerical comparisons of the performance of dif-

ferent direct methods with respect to the number of

nodes, N , is an important research topic. In fact, as

expressed by Shirazi et al. [22] in their recent survey pa-

per, there is no widely accepted way to do comparisons

of spacecraft trajectory optimization methods. Williams

conducted [26,27] a comparison of various direct tran-

scription methods using five different values of N and

later using eight different values of N for the HLGL

method. Wang et al. [25] compared the LGL, LG, and

LGR Pseudospectral methods for a minimum fuel Earth

to Mars rendezvous mission but restricted their anal-

ysis to N = 42. Garćıa-Heras et al. [8] compared the

Hermite-Simpson, the 5th order HLGL, the Chebyshev-
Gauss-Lobatto, and the LGL methods for a minimum

fuel air traffic managment problem but not all of the

methods were compared for the same N values.

It is apparent that there is limited research into

a comparison of direct methods for a fine mesh of N

values with a thorough investigation, for local methods,

of all the combinations of the number of subintervals

and the order of the interpolating polynomial for a given

N value. As a complement to the existing research, and

to address this research gap, a detailed comparison of

the local Hermite-Legendre-Gauss-Lobatto (HLGL) and

the global Legendre-Gauss Pseudospectral (PS) direct

methods for fixed problem sizes in the range N = 6 to

N = 40 has been performed here for an interplanetary

spacecraft trajectory optimization problem.

2 Methodology

A formulation of a general continuous optimal control

problem stated in the Bolza form [5], is as follows:

Minimize J = φ (xf , tf ) +

∫ tf

t0

L (x (t) ,u (t) , t) dt

Subject To:

ẋ (t) = f (x (t) ,u (t) , t)

gi (x (t) ,u (t) , t) ≤ 0, i = 1, 2, ..., ng

hi (x (t) ,u (t) , t) = 0, i = 1, 2, ..., nh
(1)

where x (t) ∈ Rnx is the state, u (t) ∈ Rnu is the control,

xf is the terminal state, tf is the terminal time, and

J is the objective function. The functions gi and hi
correspond to the inequality and equality constraints

respectively. It is important to note that the general

formulation in Eq. (1) is suitable for both minimum

time as well as minimum fuel optimizations, due to the

presence of tf and u (t) in the definition of J .



Comparison of the LG Pseudospectral and the HLGL Methods for Low Thrust Spacecraft Trajectory Optimization 3

2.1 Edelbaum Transfer

Edelbaum published his analytic equations for a low

thrust minimum fuel transfer between two inclined circu-

lar orbits of radii r0 and rf based on Gauss’ Variational

Equations [7]. For the case of a coplanar circle to circle

transfer, these equations simplify [6] to:

r(t) =
µ(√

µ
r0
− ft

)2 (2)

θ(t) =
µ

4f

(
1

r20
− 1

r2 (t)

)
(3)

ṙ (t) =
2µf(√
µ
r0
− ft

)3 (4)

θ̇(t) =
µ

2f

(
ṙ (t)

r3 (t)

)
(5)

Tm =

(
1

f

)(√
µ

r0
−
√

µ

rf

)
(6)

where we assume a small constant tangential thrust (f),

a small eccentricity throughout the transfer, and a long

tranfer time (Tm) relative to the orbital period [7,6].

Since we have constant thrust, this coplanar transfer is

optimal with respect to both time and fuel.

The Edelbaum equations are not as flexible as some

of the other shape-based methods such as exponential

sinusoids and inverse polynomials because it only de-
pends on r0, rf , and the thrust magnitude f . For this

reason, it cannot be used to generate trajectories for

rendezvous missions where time of flight and terminal

position are constraints. However, the real power of

Edelbaum’s equations lies in the fact that it can be used

as an initial guess for direct transcription methods to

solve closely related minimum time problems.

2.2 Legendre-Gauss Pseudospectral Method

The continuous optimal control problem in Eq. 1 can be

transformed into an NLP problem using the Legendre-

Gauss Pseudospectral method [9]:

Minimize J = φ (XN+1, tf )

+

(
tf − t0

2

) N∑
i=1

wiL (Xi,Ui, t (τi))

Subject To:

gi (X1:N+1,U1:N+1, t (τ1:N+1)) ≤ 0, i = 1, 2, ..., ng

hi (X1:N+1,U1:N+1, t (τ1:N+1)) = 0, i = 1, 2, ..., nh

hPS := DX0:N −
(
tf − t0

2

)
F (X1:N ,U1:N , t (τ1:N )) = 0.

(7)

where the problem has been discretized at the N

Legendre-Gauss collocation points, τ1:N , and wi are the

Gauss-Legendre quadrature weights. The PS method

relies on using global polynomials to interpolate the

state and controls, so X1:N and U1:N are the matrices

composed of rows of the state vector and control vec-

tors at τ1:N . F is the state derivative matrix at τ1:N
evaluated using the equations of motion and D is the

differentiation matrix such that DX0:N gives the deriva-

tive of the interpolating polynomial for the state at each

of the collocation points. It should be noted that an
additional Nnx equality constraints, which are due to

the PS method, have been added to the problem. The

equality and inequality constraints are enforced only

at the nodal points with the expectation that a high

enough N is likely to cause the entire interpolated solu-

tion to satisfy the constraints. For a detailed derivation

of the Legendre-Gauss Pseudospectral method, please

see Appendix A.

2.3 Hermite-Legendre-Gauss-Lobatto Method

The continuous optimal control problem in Eq. 1 can be

transformed into an NLP problem using the Hermite-

Legendre-Gauss-Lobatto method [27]:

Minimize J = φ (xm (1) , tf )

+

m∑
i=1

hi
2

n∑
j=1

wjL (xi (ξj) ,ui (ξj) , ti (ξj))

Subject To:

gi (x (γ) ,u (γ) , t (γ)) ≤ 0, i = 1, 2, ..., ng

hi (x (γ) ,u (γ) , t (γ)) = 0, i = 1, 2, ..., nh

hHLGL := ΦTdibi

− hi
2
F
(
ΦTi bi,ui (ζi) , ti (ζi)

)
= 0, i = 1, 2, ...,m

(8)

where the time domain has been split into m subintervals

where within each subinterval, an nth order polynomial

interpolates the state and a linear interpolation is used

for the controls. Within subinterval i, the n LGL points

ξ are divided into n+1
2 nodes denoted by γ and n−1

2

collocation points denoted by ζ. The term wj denotes

the Legendre-Gauss-Lobatto quadrature weights within

each subinterval. In total, across all subintervals, this

problem has been discretized at the N Legendre-Gauss-

Lobatto collocation points. The quantities xi and ui are

the state and control approximations at the ith subin-

terval while x and u represent the approximations of

the full state and control trajectories respectively in

[t0, tf ]. The quantity ΦTdibi represents the derivative

of the approximating polynomial for the state evalu-

ated at ζi while ΦTi bi just represents the polynomial
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evaluated at those points. An additional mnx
(
n−1
2

)
equality constraints, have been added to the problem.

The hHLGL constraints are enforced at the collocation

points whereas the other constraints are enforced at the

nodal points. For a detailed derivation of the Hermite-

Legendre-Gauss-Lobatto method, please see Appendix

B.

3 Problem Formulation - Earth to Mars

Orbital Transfer

The dimensional problem statement is formulated with

the state x =
[
r θ ṙ θ̇

]
and the control u = [u α], where

u is the thrust magnitude and α is the flight path angle.

This can be written as:

Minimize J = tf

Subject To:

ẋ (t) =

[
ṙ θ̇

(
rθ̇2 − µSun

r2
+ u sinα

) (
−2ṙθ̇

r
+
u cosα

r

)]
xlb ≤ x ≤ xub

xlb = [rEarth 0 − 100 max(|ṙEdel|) 0]

xub =

[
rMars 2(2π)

⌈
θf,Edel

2π

⌉
100 max(|ṙEdel|) 100 max(|θ̇Edel|)

]
[0 − π] ≤ u ≤

[
3× 10−4 π

]
1 ≤ tf ≤ 10tf,Edel

x (0) =

[
rEarth 0 0

√
µSun
r3Earth

]
x (tf ) =

[
rMars

3π

2
+ k2π 0

√
µSun
r3Mars

]

where the units for x are [m rad m/s rad/s],

the units for u are [N/kg rad], and the unit of t is [s].

The quantities with subscript ()Edel correspond to the

Edelbaum transfer. A linear scaling method was chosen

where each of the variables and bounds are scaled by

the corresponding upper bounds so that the problem is
non-dimensionalized. In addition, the decision vector lies

in [−1, 1] because the upper bound of each variable has

been chosen to be larger than or equal to the magnitude

of the lower bound.

4 PS and HLGL Comparison with Constant N

The Legendre-Gauss Pseudospectral method and the

Hermite-Legendre-Gauss-Lobatto method have been

compared for an Earth to Mars minimum time transfer

problem for N = [6, 40]. In addition, the N = 64 PS

method and the N = 64 HLGL method with n = 3 were

analyzed to investigate the behaviour at a higher value

of N . The n = 3 HLGL method is also known as the

Hermite-Simpson (HS) method. The reference trajectory

for calculating error metrics for trajectories in the range

N = [6, 40] was taken to be the solution of the N = 64

PS method as it had a lower objective function value

than the N = 64 HS method. These methods have been

implemented and compared in Matlab using SNOPT

[10] as the NLP solver. The Edelbaum trajectory was

used as an initial guess for the N = 16 HS method. To

make a fair comparison, the result of this optimization

was then used as an initial guess for all runs.
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Fig. 1 Earth To Mars Initial Guess - Edelbaum

4.1 Optimized Earth to Mars Trajectory

For N = 64, both the HS method and the PS method

find trajectories that are close to each other, as can be

seen in Fig. 2. This suggests that close local minima have

been found. The optimal transfer time for the PS method

was found to be approximately 354 days while for the

HS method, it was found to be about 365 days. If we

assume a spacecraft dry terminal mass of mdry = 300 kg

and an engine with Isp = 3550 s, it was found that the

PS trajectory expended more fuel in trying to minimize

the objective as it consumed mfuel = 90 kg while the

HS trajectory only consumed mfuel = 76 kg.

4.2 HLGL (m,n) Pairs for Constant N

To compare the performance of the PS and HLGL meth-

ods, it is desirable to keep the problem size approxi-

mately constant. This can be done by comparing runs

that have the same number of nodes. In this paper, we

define the problem size to be the length of the NLP vec-

tor passed to SNOPT. The problem size of the global PS

method is directly controlled by N , the number of nodes.

In contrast, the problem size of the HLGL method is

indirectly controlled by m, the number of subintervals,

and n, the order of the interpolating polynomial within
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Fig. 2 Earth To Mars Optimized Trajectory - N = 64

each subinterval. It is important to note that for a given

N value, the size of the NLP vector for the Legendre

Gauss PS method is given by N(nx + nu) + 1 while the

size of the NLP vector for the HLGL method is given by
N(nx +nu)−nx + 1. The size of the NLP vector for the

HLGL method is lower by nx since we omit the initial

state from the NLP vector as it is a known quantity. It is,

however, augmented internally to evaluate constraints

and perform interpolation. For large enough values of

N , it is reasoned that the difference of nx should be

negligible when controlling for the problem size. The

relation between N , m, and n can be expressed as

N =
n+ 1

2
+

(
n− 1

2

)
(m− 1) ,

{n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1}
(9)

where the first term represents the number of nodes in

the first subinterval and the second term accounts for

the (n − 1)/2 nodes in each of the remaining (m − 1)

subintervals. The restrictions on n are necessary to

make the number of constraints per interval, (n− 1) /2,

a positive integer. It is useful to isolate for m in Eq. (9)

as a function of N and n and this results in the simple

relation

m =
2 (N − 1)

n− 1
, {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1}. (10)

For a given value of N , Eq. (10) can be used to gener-

ate possible pairs of (m,n) values by iterating through

various values of n. To search for valid integer values

of m, it is necessary to test positive odd values of n

between the lower bound of n = 3 and the upper bound

of n = 2N − 1. A full listing of the possible (m,n) pairs

in the range N = [6, 40] is given in Table 1.

At this point, a connection to number theory can be

made here using Ramanujan’s work on divisor functions

[19] and Highly Composite Numbers (HCN) [18,15,2].
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The divisor function

σk (n) =
∑
d|n

dk (11)

sums over the kth powers of all d such that d is a divisor

of n, which is indicated by d|n. If k = 0, then

σ0 (n) =
∑
d|n

d0 (12)

counts the number of divisors for a given n and is a well

known function in number theory [11]. As the values of

σ0 (n) are tabulated in the literature [1], if we connect

Eq. (10) to this function, then it will be possible to look

up the number of possible (m,n) pairs for a given N .

Let us therefore rewrite Eq. (10) as:

m =
2 (N − 1)

n− 1
, {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1} (13)

=
N − 1(
n−1
2

) , {n ∈ 2Z + 1 | 3 ≤ n ≤ 2N − 1} (14)

=
N − 1

k
, {k ∈ Z | 1 ≤ k ≤ N − 1} (15)

where k = n−1
2 . In this form, since any integral value of

k from 1 to N − 1 that is a divisor of N − 1 corresponds

to an HLGL (m,n) pair, we see that the number of

HLGL pairs corresponds to the number of divisors of

N − 1. To formalize this, let us denote the number of

valid HLGL pairs for a given N by η(N). Then we can

write

η (N) = σ0 (N − 1) . (16)

With Eq. (16) we are able to use the values of the

divisor function to determine the number of possible

HLGL pairs for a given N . Additionally, we know that

for a natural number p, we can find an upper bound on

the number of divisors using σ0 (p) < 2
√
p and knowing

that the number of divisors must be an integral value,
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we can write η (N) ≤
⌊
2
√
N − 1

⌋
. A plot that shows

η (N) for the range N = [2, 40] along with the upper

bound of
⌊
2
√
N − 1

⌋
is given in Fig. 3.

Through this process, it can be seen that η (N) is

non-monotonic, and that there are some values of N that

have more valid (m,n) pairs than others. Odd values

of N tend to result in larger values of η (N) since this

causes N − 1 in Eq. (16) to be even, and even numbers

tend to have more divisors than odd numbers. In 1915,

Ramanujan [18] introduced the concept of a Highly

Composite Number (HCN) to describe a number q such

that σ0 (p) < σ0 (q) , ∀p < q. Looking at the spikes in

Fig. 3, we see that a maximum value of η (N) = 9 occurs

at N = 37 which is expected since N − 1 = 36 is the

largest HCN less than 48.

4.3 Calculating Errors between Spacecraft Trajectories

with Different Time Domains

For minimum time spacecraft trajectory optimization

problems, since the terminal time is free, the time do-

mains for trajectories resulting from different optimiza-

tion runs may not be equal. This is certainly the case

with using the N = 64 PS trajectory as the reference

trajectory, since the transfer duration found by this
method is generally smaller than the transfer durations

found using the other cases that are being compared.

To calculate the Root Mean Square (RMS) errors, cor-

responding points in time need to be chosen between

both trajectories. If we use dimensional time to find

the corresponding points, then the reference N = 64

PS trajectory needs to be extrapolated and will diverge

quite quickly as this involves a 64th order polynomial.

The solution used in this paper was to calculate

RMS errors by comparing points that correspond not

to the same points in dimensional time but to the same

points in normalized time s ∈ [−1, 1]. For example, the

beginning (s = −1), middle (s = 0), and end (s = 1) of

each trajectory are compared with each other. This idea

eschews extrapolation and allows the comparison of two

spacecraft trajectories with different time domains. As

required, the RMS errors found using this method will

approach zero as these trajectories converge.

4.4 Comparison Results

The PS method was compared with the HLGL method

for the range N = [6, 40] and each of the HLGL pairs

is given a unique case number. If a run converged, the

corresponding case number will be bolded in Table 1 and

the data will be included in the figures below. The results

for N = 37, which corresponds to the largest number of

HLGL (m,n) pairs in this range, with η (37) = 9, are

given in Table 2.
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The plots in Figs. 4-9 show the behaviour of all the

HLGL pairs in comparison to the PS method with insets

showing the behaviour for N = 37. The PS metrics for

a particular value of N are repeated such that each of

the converged HLGL cases corresponding to that N

value has a PS metric for comparison. It is important to

note that these metrics are represented in dimensional

units. From these plots, one can immediately observe

that although the relationship between the metrics and

the case number is highly variable and non-monotonic,

certain general trends can be found. First it is seen

from Fig. 9 that the processor times for a given N value

are in general higher for the PS method than for the

corresponding HLGL cases. From Fig. 8, it is seen that

the transfer duration, which represents the objective

function, tends to be lower for the PS method than

for the HLGL method. From Case 3 to Case 15, the

RMS errors for both the HLGL method and the PS

method are similar. For subsequent case numbers, the

HLGL errors tend to be higher than the correspond-
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Table 1 HLGL (m,n) Pairs and Case Numbers - Bolded Case Numbers indicate convergence

Case
Number

Nodes
N

HLGL
Pair

(m,n)

Case
Number

Nodes
N

HLGL
Pair

(m,n)

Case
Number

Nodes
N

HLGL
Pair

(m,n)

Case
Number

Nodes
N

HLGL
Pair

(m,n)

1 6 (5, 3) 37 16 (1, 31) 73 25 (4, 13) 109 33 (4, 17)
2 6 (1, 11) 38 17 (16, 3) 74 25 (3, 17) 110 33 (2, 33)
3 7 (6, 3) 39 17 (8, 5) 75 25 (2, 25) 111 33 (1, 65)
4 7 (3, 5) 40 17 (4, 9) 76 25 (1, 49) 112 34 (33, 3)
5 7 (2, 7) 41 17 (2, 17) 77 26 (25, 3) 113 34 (11, 7)
6 7 (1, 13) 42 17 (1, 33) 78 26 (5, 11) 114 34 (3, 23)
7 8 (7, 3) 43 18 (17, 3) 79 26 (1, 51) 115 34 (1, 67)
8 8 (1, 15) 44 18 (1, 35) 80 27 (26, 3) 116 35 (34, 3)
9 9 (8, 3) 45 19 (18, 3) 81 27 (13, 5) 117 35 (17, 5)
10 9 (4, 5) 46 19 (9, 5) 82 27 (2, 27) 118 35 (2, 35)
11 9 (2, 9) 47 19 (6, 7) 83 27 (1, 53) 119 35 (1, 69)
12 9 (1, 17) 48 19 (3, 13) 84 28 (27, 3) 120 36 (35, 3)
13 10 (9, 3) 49 19 (2, 19) 85 28 (9, 7) 121 36 (7, 11)
14 10 (3, 7) 50 19 (1, 37) 86 28 (3, 19) 122 36 (5, 15)
15 10 (1, 19) 51 20 (19, 3) 87 28 (1, 55) 123 36 (1, 71)
16 11 (10, 3) 52 20 (1, 39) 88 29 (28, 3) 124 37 (36, 3)
17 11 (5, 5) 53 21 (20, 3) 89 29 (14, 5) 125 37 (18, 5)
18 11 (2, 11) 54 21 (10, 5) 90 29 (7, 9) 126 37 (12, 7)
19 11 (1, 21) 55 21 (5, 9) 91 29 (4, 15) 127 37 (9, 9)
20 12 (11, 3) 56 21 (4, 11) 92 29 (2, 29) 128 37 (6, 13)
21 12 (1, 23) 57 21 (2, 21) 93 29 (1, 57) 129 37 (4, 19)
22 13 (12, 3) 58 21 (1, 41) 94 30 (29, 3) 130 37 (3, 25)
23 13 (6, 5) 59 22 (21, 3) 95 30 (1, 59) 131 37 (2, 37)
24 13 (4, 7) 60 22 (7, 7) 96 31 (30, 3) 132 37 (1, 73)
25 13 (3, 9) 61 22 (3, 15) 97 31 (15, 5) 133 38 (37, 3)
26 13 (2, 13) 62 22 (1, 43) 98 31 (10, 7) 134 38 (1, 75)
27 13 (1, 25) 63 23 (22, 3) 99 31 (6, 11) 135 39 (38, 3)
28 14 (13, 3) 64 23 (11, 5) 100 31 (5, 13) 136 39 (19, 5)
29 14 (1, 27) 65 23 (2, 23) 101 31 (3, 21) 137 39 (2, 39)
30 15 (14, 3) 66 23 (1, 45) 102 31 (2, 31) 138 39 (1, 77)
31 15 (7, 5) 67 24 (23, 3) 103 31 (1, 61) 139 40 (39, 3)
32 15 (2, 15) 68 24 (1, 47) 104 32 (31, 3) 140 40 (13, 7)
33 15 (1, 29) 69 25 (24, 3) 105 32 (1, 63) 141 40 (3, 27)
34 16 (15, 3) 70 25 (12, 5) 106 33 (32, 3) 142 40 (1, 79)
35 16 (5, 7) 71 25 (8, 7) 107 33 (16, 5)
36 16 (3, 11) 72 25 (6, 9) 108 33 (8, 9)

Table 2 Comparison Metrics for HLGL (m,n) Pairs with the LG Pseudospectral Method for N = 37

Case
Number

Nodes
N

PS or
HLGL

Pair (m,n)

Transfer
Duration

[s]

Position
RMS

Error [m]

Terminal
Position RMS

Error [m]

Velocity
RMS

Error [m/s]

Thrust
RMS Error

[N/kg]

Processor
Time [s]

- 37 PS 3.07× 107 1.35× 108 2.23× 104 6.37× 101 1.03× 10−4 610
124 37 (36, 3) 3.17× 107 5.13× 109 1.09× 107 8.93× 102 2.45× 10−4 43.9
125 37 (18, 5) 3.13× 107 5.00× 109 1.63× 108 7.54× 102 2.20× 10−4 42.1
126 37 (12, 7) 3.32× 107 1.36× 1010 9.87× 108 1.58× 103 2.60× 10−4 295
127 37 (9, 9) 3.10× 107 5.19× 109 7.96× 106 7.33× 102 1.74× 10−4 130
128 37 (6, 13) 3.10× 107 4.38× 109 1.58× 106 5.72× 102 1.36× 10−4 107
129 37 (4, 19) 3.09× 107 3.12× 109 1.25× 107 5.26× 102 1.40× 10−4 80.3
130 37 (3, 25) 3.13× 107 4.65× 109 1.28× 106 7.36× 102 2.03× 10−4 78.4
131 37 (2, 37) - - - - - -
132 37 (1, 73) - - - - - -
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ing PS errors and stay close to a certain level as N

increases while the PS errors tend to decrease with in-

creasing N . This may occur because as the number of

nodes is increased, the HLGL trajectories approach the

N = 64 HLGL trajectory and the PS trajectories ap-

proach the N = 64 PS trajectory, which is used as the

reference. However, like Case 72, there are exceptions

where certain HLGL cases have errors that are below

the corresponding PS errors. Another exception occurs

for Case 59, which corresponds to (m,n) = (21, 3) where

the transfer duration is only 342 days in contrast to the

reference value of 354 days for the N = 64 PS method.

Perhaps if we use the solution of this run as an initial

guess, lower transfer durations would result for all the

HLGL pairs. From Table 1, it is seen that problems

with convergence for HLGL runs occur for n ≥ 35. All

the PS method runs in the range N = [6, 40] have con-

verged but HLGL runs with n ≥ 43 have not converged.

An important analysis is how for a given value of N ,

the choice of m and n affects the performance of the

HLGL method. From the insets, it is seen that Case 126,

which corresponds to (m,n) = (12, 7) exhibits higher

errors when compared to Case 127 which corresponds

to (m,n) = (9, 9), even though they both correspond

to N = 37. For the specific example of Velocity RMS
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Error, looking at Table 2, it is apparent that while Case

126 has an error of 1.58× 103 [m/s], Case 127 only has

an error of 7.33× 102 [m/s].

5 Conclusion

A minimum time low thrust Earth to Mars trajectory

with a terminal phase constraint has been solved us-

ing both the Legendre-Gauss Pseudospectral and the

Hermite-Legendre-Gauss-Lobatto methods. The phase-

free Edelbaum transfer is used to set bounds, scale the

problem, and generate a suitable initial guess. A general

algorithm for finding the HLGL (m,n) pairs for a given

value of N has been formulated. An expression for the

number of possible HLGL pairs has been represented

using the concept of a divisor function and an upper

bound has been derived. Ramanujan’s work on Highly

Composite Numbers is used to describe values of N for

which many HLGL pairs exist. It is also shown that

spacecraft trajectories with different time domains can

be compared by calculating errors between points that

correspond to the same normalized times. A detailed

comparison of the performance of the PS and HLGL

methods has been completed for fixed problem sizes in

the range N = [6, 40], which addresses a research gap.
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This reveals significant performance differences between

the PS and HLGL methods with respect to N , m, and n.

Future adaptive versions of the HLGL method, such as

the recent work by Lei et al. [14] may benefit by exploit-

ing those HLGL pairs which offer the best performance

for a given problem size.

A Legendre-Gauss Pseudospectral Method

The Pseudospectral method is typically formulated as a global
method. We will develop and summarize the equations for
the Nth order global Legendre-Gauss Pseudospectral method
using the Nth order LG points as collocation points based on
the work by Garg et al. [9].

First we transform the problem into τ = [−1, 1] from
t = [t0, tf ] space using:

t =
tf − t0

2
τ +

tf + t0

2
. (17)

The state and control are then approximated using La-
grange basis polynomials Li (τ):

x (τ) =

N∑
i=0

XiLi (τ) (18)

u (τ) =
N∑

i=1

UiLi (τ) (19)

where Xi and Ui are row vectors.
Differentiating and evaluating at the kth collocation point

tk results in

ẋ (τk) =

N∑
i=0

XiL̇i (τk) =

N∑
i=0

DkiXi (τk) . (20)

We note that X0 is used for interpolation but not for collo-
cation. Now we can impose constraints that the interpolated
values of the state derivative at the collocation points τk
match the exact values of the state derivative at τk, expressed
using F :

DX0:N =

(
tf − t0

2

)
F (X1:N ,U1:N , t (τ1:N )) . (21)

Since we are using the Legendre-Gauss points, we can also
employ Gaussian quadrature to write

XN+1 = X0 +

(
tf − t0

2

)
wTF (X1:N ,U1:N , t (τ1:N )) (22)

where XN+1 is the terminal state and w is the column vector
of the Gaussian weights.

The NLP problem obtained from transcribing the optimal
control problem in Eq. 1 can be written as:

Minimize J = φ (XN+1, tf )

+

(
tf − t0

2

) N∑
i=1

wiL (Xi,Ui, t (τi))

Subject To:

gi (X1:N+1,U1:N+1, t (τ1:N+1)) ≤ 0, i = 1, 2, ..., ng

hi (X1:N+1,U1:N+1, t (τ1:N+1)) = 0, i = 1, 2, ..., nh

hPS := DX0:N −
(
tf − t0

2

)
F (X1:N ,U1:N , t (τ1:N )) = 0.

(23)

We note that an additional Nnx equality constraints are added
to the problem due to the Legendre-Gauss PS method.

B Hermite-Legendre-Gauss-Lobatto Method

The HLGL method is a local method formulated by Williams
[27]. We will develop and summarize this method here. The
time interval [t0, tf ] is first subdivided into m subintervals
where the (m+ 1)th order LGL points are used as the subin-
terval boundaries in this paper. The time domain for each
subinterval is then transformed into τ = [−1, 1] using the
subinterval boundaries. Within each of these subintervals, the
state is approximated by an nth order polynomial [27].

In the HLGL method, n is restricted to be an odd integer
such that n ≥ 3. For the ith subinterval, the state approxima-
tion can be written as

xi (τ) = a0 + a1τ + a2τ
2 + . . .+ anτ

n. (24)

In order to form this polynomial, the n LGL points corre-
sponding to the ith subinterval are represented by ξ and are
divided into n+1

2
nodes denoted by γ and n−1

2
collocation

points denoted by ζ:

γj , ξ2j−1, j = 1, . . . , (n+ 1)/2 (25)

ζj , ξ2j , j = 1, . . . , (n− 1)/2. (26)

The (n + 1) pieces of information needed to find the
coefficients are obtained from the nodes using both the state
values and its derivatives in the τ domain:

1 −1 1 · · · γn−1
1 γn1

1 γ12 γ22 · · · γn−1
2 γn2

...
...

...
...

...
...

1 γ1n+1

2

γ2n+1

2

· · · γn−1
n+1

2

γnn+1

2

0 1 2γ11 · · · (n− 1)γn−2
1 nγn−1

1

...
...

...
...

...
...

0 1 2γ1n+1

2

· · · (n− 1)γn−2
n+1

2

nγn−1
n+1

2




a0

a1

a2

...
an

 =



x (γ1)
x (γ2)

...

x
(
γ n+1

2

)
hi

2
f (γ1)
...

hi

2
f
(
γ n+1

2

)


(27)

where hi is the length of the ith subinterval in t space.
Eq. (27) is of the form Aa = b, so we can now determine

the values of the state at the collocation points by inverting
this system of equations:

xi (ζj) = vT
j a = vT

j A−1bi = φT
j bi (28)

where

vj =
[

1 ζj ζ2j · · · ζnj
]T
, j = 1, . . . , (n− 1)/2. (29)

If we take the derivative of Eq. (24) and evaluate at the
collocation points, then we obtain

ẋi (ζj) = vT
dj
a = vT

dj
A−1bi = φT

dj
bi (30)

where

vdj
=
[

0 1 2ζj · · · nζn−1
j

]T
, j = 1, . . . , (n− 1)/2. (31)

If we form the following matrices for the ith subinterval:

Φi =
[
φ1 φ2 · · · φ(n−1)/2

]
(32)

Φdi
=
[
φd1

φd2
· · · φd(n−1)/2

]
(33)
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then the constraints to be enforced within the ith subinterval
can now be written as

ΦT
di
bi −

hi

2
F
(
ΦT

i bi,ui (ζi) , ti (ζi)
)

= 0 (34)

where ui is evaluated at ζi through linear interpolation of the
values at γi, the nodes in the ith subinterval.

The NLP problem obtained from transcribing the optimal
control problem in Eq. 1 can be written as:

Minimize J = φ (xm (1) , tf )

+

m∑
i=1

hi

2

n∑
j=1

wjL (xi (ξj) ,ui (ξj) , ti (ξj))

Subject To:

gi (x (γ) ,u (γ) , t (γ)) ≤ 0, i = 1, 2, ..., ng

hi (x (γ) ,u (γ) , t (γ)) = 0, i = 1, 2, ..., nh

hHLGL := ΦT
di
bi

−
hi

2
F
(
ΦT

i bi,ui (ζi) , ti (ζi)
)

= 0, i = 1, 2, ...,m

(35)

where wj are the Legendre-Gauss-Lobatto quadrature weights
within each subinterval. We note that an additionalmnx

(
n−1
2

)
equality constraints, have been added to the problem.
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ods to Minimum-Fuel Trajectory Problems with Required
Time of Arrival in ATM. Journal of Aerospace Informa-
tion Systems 13(7), 243–265 (2016)

9. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Ben-
son, D.A., Huntington, G.T.: A unified framework for
the numerical solution of optimal control problems using
pseudospectral methods. Automatica 46(11), 1843–1851
(2010)

10. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An
SQP Algorithm for Large-Scale Constrained Optimization.
SIAM Review 47(1), 99–131 (2005)

11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory
of Numbers. Oxford University Press (1975)

12. Herman, A.L., Conway, B.A.: Direct optimization using
collocation based on high-order Gauss-Lobatto quadrature
rules. Journal of Guidance, Control, and Dynamics 19(3),
592–599 (1996)

13. Izzo, D.: Lambert’s Problem for Exponential Sinusoids.
Journal of Guidance, Control, and Dynamics 29(5), 1242–
1245 (2006)

14. Lei, H., Liu, T., Li, D., Ye, J., Shao, L.: Adaptive Mesh
Iteration Method for Trajectory Optimization Based on
Hermite-Pseudospectral Direct Transcription. Mathemat-
ical Problems in Engineering 2017, 1–7 (2017)

15. Nicolas, J.L., Robin, G.: Highly Composite Numbers by
Srinivasa Ramanujan. The Ramanujan Journal 1(2), 119–
153 (1997)

16. Petropoulos, A.E., Longuski, J.M.: Shape-Based Algo-
rithm for the Automated Design of Low-Thrust, Gravity
Assist Trajectories. Journal of Spacecraft and Rockets
41(5), 787–796 (2004)

17. Petropoulos, A.E., Sims, J.A.: A review of some exact
solutions to the planar equations of motion of a thrusting
spacecraft. In: 2nd International Symposium on Low
Thrust Trajectories. Toulouse, France (2002)

18. Ramanujan, S.: Highly composite numbers. Proceedings
of the London Mathematical Society 2(1), 347–409 (1915)

19. Ramanujan, S.: On the number of divisors of a number.
Journal of the Indian Mathematical Society 7, 131–133
(1915)

20. Rao, A.V.: A survey of numerical methods for optimal
control. Advances in the Astronautical Sciences 135(1),
497–528 (2009)

21. Ross, I.M., Fahroo, F.: Legendre Pseudospectral Approxi-
mations of Optimal Control Problems. In: New Trends in
Nonlinear Dynamics and Control and Their Applications,
Lecture Notes in Control and Information Science, pp.
327–342. Springer, Berlin, Heidelberg (2004)

22. Shirazi, A., Ceberio, J., Lozano, J.A.: Spacecraft trajec-
tory optimization: A review of models, objectives, ap-
proaches and solutions. Progress in Aerospace Sciences
102, 76–98 (2018)

23. Wall, B.: Shape-Based Approximation Method for Low-
Thrust Trajectory Optimization. In: AIAA/AAS Astrody-
namics Specialist Conference and Exhibit. American Insti-
tute of Aeronautics and Astronautics, Honolulu, Hawaii
(2008)

24. Wall, B.J., Conway, B.A.: Shape-Based Approach to Low-
Thrust Rendezvous Trajectory Design. Journal of Guid-
ance, Control, and Dynamics 32(1), 95–101 (2009)

25. Wang, Y., Zhu, Y., Jiang, X., Li, S.: Comparison of LPM,
GPM and RPM for optimization of low-thrust Earth-Mars
rendezvous trajectories. In: Proceedings of 2014 IEEE
Chinese Guidance, Navigation and Control Conference,
pp. 2461–2467. IEEE, Yantai, China (2014)

26. Williams, P.: A comparison of differentiation and integra-
tion based direct transcription methods. Advances in the
Astronautical Sciences 120, 389–408 (2005)

27. Williams, P.: Hermite-Legendre-Gauss-Lobatto Direct
Transcription in Trajectory Optimization. Journal of
Guidance, Control, and Dynamics 32(4), 1392–1395
(2009)


	Introduction
	Methodology
	Problem Formulation - Earth to Mars Orbital Transfer
	PS and HLGL Comparison with Constant N
	Conclusion
	Legendre-Gauss Pseudospectral Method
	Hermite-Legendre-Gauss-Lobatto Method

