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Abstract Recently, significant developments in deep learning have made many
possibilities in the field of fluid mechanics. This paper presents a new method
of using improved convolutional neural network to learn airfoil lift coefficient
calculated by OpenFOAM simulation tool. We propose a ”feature-enhanced-
image” data preprocessing method to prepare the training and testing data
set. A novel convolutional neural network is designed which uses deeper con-
volution and pooling layers coupled with batch normalization technique. In
addition, before linear regression, in fully-connected layers, we use dropout
method to reduce the risk of over-fitting. Mini-batch stochastic gradient de-
scent(SGD) optimization algorithm is chosen and mean square error(MSE) is
used to do the model evaluation when training and testing the model. It is
demonstrated that this improved deep convolutional neural network(IDCNN)
provides more accurate lift coefficient prediction compared to other state-of-
the-art neural networks. We also test the effect of batch size and full batch
normalization implementation on the performance of the whole convolutional
neural network. Finally, it is concluded that the best predicting performance
is achieved in the condition of 10 batch size and the mean square error of blind
test can reach 3.1×10−4. Furthermore, the ”feature-enhanced-image” method
we proposed can achieve 85.2% decreasing of testing MSE.
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1 Introduction

The calculation of aerodynamic coefficients of airfoil has always been an impor-
tant process of airfoil optimization and aircraft design[2]. At present, the main
methods to obtain aerodynamic coefficients are wind tunnel test and computa-
tional fluid dynamics(CFD) simulation. In addition, there exists many effective
surrogate models[6,9,8] to deal with these high dimensional computing prob-
lems and many researchers also utilize artificial neural network(ANN) tech-
nique to perform the aerodynamic coefficients approximation[4,7]. Recently,
great advances in neural networks and machine learning have been made due
to the booming development of computational power. The development of
deep neural network(DNN) technique has opened the new doors to improve
the robustness, generalization and precision of the aerodynamic coefficients
approximation model.

More recently, more and more researchers have applied the deep learning
techniques in the field of aerospace and achieve some positive results. Ju-
lia Ling et al[12] proposed a novel deep neural network architecture which
contains a multiplicative layer with embedded invariance for the Reynolds
stress anisotropy prediction and this model shows improved prediction pre-
cision compared with a commonly used neural network. S.Suresh et al[17]
used a RNN method to predict lift coefficient at high angle of attack and it
demonstrates RNN can has high predicted performance than memory neuron
networks(MNN). Yao Zhang et al[18] used a CNN approach to predict air-
foil aerodynamic coefficients for unseen airfoil shapes. However, there exists a
MSE gap between the testing data set and training data set, which means the
model they proposed has a risk of over-fitting.

Inspired by the work by Yao Zhang et al[18], we design an improved deep
convolutional neural network to do the aerodynamic coefficients approxima-
tion and this paper will demonstrate that the prediction model can provide
more accurate and general coefficients approximation. For a CNN model, the
most important thing is the preprocessing of the training data. Enough and
extensive data can contribute to a good learning ability and generalization
performance model[10]. Within our known knowledge, we made the following
innovations in data preparation.

– We use user-defined OpenFOAM simulation tool to guarantee the accuracy
of training data.

– We propose a ”feature-enhanced-image” method to prepare the training
data, thus broadening the width of the airfoil data image and changing the
brightness of the image to do the data augmentation.

– Feed some bad shapes of airfoil data image into the IDCNN model we
proposed, in oder to enhance its generalization ability.
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2 Improved Deep CNN for Lift Coefficient Prediction

Yao Zhang et al[18] used a highly similar architecture to LeNet-5[11], to do the
airfoil lift coefficients approximation. It has demonstrated that CNN technique
has been a useful perspective in engineering meta-modeling task, but the CNN
model they proposed did not get a satisfactory accuracy. We harness a deeper
CNN architecture to predict lift coefficient, including three convolution layers,
three pooling layers and four fully-connected layers.

2.1 IDCNN Architecture for Lift Coefficient Prediction Model

The improved CNN architecture we proposed is based on the traditional
LeNet-5 architecture, but we have made the following changes and improve-
ments. We deepening the whole neural network, including the convolutional
layer, pooling layer and fully-connected layer. Besides, batch normalization[5]
is used after each pooling operation and it can accelerate training speed and
reduce internal covariate shift between previous pooling layer and next con-
volutional layer. In order to avoid the over-fitting problems effectively which
may affect the prediction accuracy, we adopt the dropout[16] technique and
set the dropout rate to 0.7. ReLU activation function and mini-batch SGD[1]
optimized method are chosen in the training of the CNN model.

The data input layer is a mini-batch of airfoil images and the resolution
of the image is 100 × 100. The size of batch can affect the training results of
model, and we will compare testing accuracy with different given batch sizes.
In convolutional layer 1, we used 40 convolution kernels which have the size of
5 × 5. After feeding the output data into pooling layer 1, we add a BN layer
and the same operation occurs between every convolutional layer and pooling
layer. In pooling layer 1, we select max-pooling method and the pooling filter
size is 2 × 2. In addition, zero-padding method and moving step size which is
equal to filter size in each direction are chosen. In convolutional layer 2, 60
convolutional filters are used during the convolution operation and the filter
size is 5×5. The settings of pooling 2 are the same as pooling layer 1 and a BN
layer is added before the pooling 2. The last convolutional layer, we use 100
kernels which have the same size as previous kernels. Then the max-pooling
method is chosen in the pooling layer 3. After the convolutional and pooling
layers, four fully-connected layers are used to do the linear regression, in other
words, airfoil lift coefficient prediction. The details of the number of nodes in
each fully-connected layer are shown in figure 1.

To summarize, we have constructed an improved deep CNN model that
contains 13 hidden layers, including three convolutional layers, three pooling
layers, three BN layers and four fully-connected layers. A visual illustration
architecture of the IDCNN we proposed is shown in figure 1.
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Fig. 1 Improved Deep CNN Architecture for Lift Coefficient Prediction Model
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Fig. 2 Comparing Result of Experimental and CFD Data

2.2 Data Preparation

The CNN model we proposed is trained and tested on a database of airfoil
data images and lift coefficients. According to the goal of airfoil optimiza-
tion in future, SC1095 airfoil is chosen, and Hicks-Henne fitting method[3]
is used to generate the training and testing airfoil datasets. In this context,
the user-defined OpenFOAM solver is chosen as the simulation tool to obtain
the aerodynamic coefficients. The simulating mach number is 0.4, reynolds
number is 3.63 × 106 and the angle of attack is 6.13◦. Spalart-Allmaras tur-
bulence model[15] and SIMPLE algorithm[13] are selected. In order to check
the accuracy of CFD results, in this paper, we compare the CFD result with
experimental data[14]. Figure 2 shows the comparing result and it shows that
the CFD result is highly consistent with experimental data. In other words,
figure 2 illustrates that the user-defined OpenFOAM solver and computing
settings are feasible in this situation.

Data preprocessing is crucial to the training and testing of CNN model.
Besides, we expect to get more training samples with less computational cost.
In view of the above two situations, we propose a novel data preprocessing
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Fig. 3 ”feature-enhanced-image” Method

method ”feature-enhanced-image” for the airfoil data image and the descrip-
tion of this method is given below. A initial SC1095 airfoil data image is shown
at the top of figure 3. The maximum thickness of the SC1095 airfoil is only
9.50% of the chord length. So a small changes of control variables could not
lead to a visible shape changes in a low resolution data image. In order to
maximize the shape changes of the given airfoil at low resolution, we broaden
the width of airfoil data image by multiplying the thickness of airfoil by 10
times. Then we do the data augmentation by changing the brightness of the
data image into 3 different types. In other words, three different types of airfoil
data image have the same lift coefficient label. We can get massive training
and testing samples using only one third of CFD computation cost through
this method. Changing brightness means changing the number of airfoil data
matrix, and the variance of all the data in the matrix can keep the same. Thus
the information of the airfoil shape can be preserved and the cost of training
data preparation can be reduced at the same time. The process of applying
the ”feature-enhanced-image” method in the IDCNN model is shown in figure
3.

In addition to the above data preprocessing methods, we also add some bad
airfoil data images into the training data set. Some bad airfoil image examples
are shown in figure 4. Bad images means some airfoils that can not be regarded
as a proper airfoil shape. We can consider this operation as the noise adding.
Through changing the control variables of Hicks-Henne fitting function, 11550
pairs of normal input/output(I/O) training data set and 1050 pairs of I/O
testing data set are generated. Then we use the ”feature-enhanced-image”
method to do the data augmentation, thus we get 34650 pairs of I/O training
data set for the following hyper parameter tunning.
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Fig. 4 Examples of Bad Airfoil Images

3 Results and Discussion

In a linear regression model, MSE is the most popular used evaluation criteria.
The MSE calculated by summing over all of the squared differences between
the predicted and true values and then divided by the number of the batch
size. In equation 1, mbatch represents the number of batch size, ti is the true
value and yi is the predicted value.

MSE =

mbatch∑
i=1

(ti − yi)
2

mbatch
(1)

In the training of the IDCNN model we proposed. We utilize the early-
stopping method to save the trained model at a specific epoch to get the
minimum testing MSE.

3.1 ”feature-enhanced-image” Method Influence on the Testing MSE

We select 11550 training data randomly from the 34650 training data set to
check the influence of the ”feature-enhanced-image” method on the testing
MSE compared with the normal training data set mentioned above. The other
parameters in the CNN model are the same and the comparing results of
testing MSE are showing in figure 5. In these two CNN model, dropout tech-
nique is used to fight the over-fitting problem. The testing MSE of the CNN
with normal training data set can only reach 2.5× 10−3. However, the testing
MSE of the randomly selected training data that using the ”feature-enhanced-
image” method can reach 3.7 × 10−4. The decreasing rate of the testing MSE
is 85.2% which shows the ”feature-enhanced-image” is a very effective method
for reducing the testing MSE. We can also figure out that the amplitude of
the MSE fluctuation has increased after using the ”feature-enhanced-image”
method. This is because we have added some noise airfoil data images into the
training data set.
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Fig. 5 ”feature-enhanced-image” Method Influence on the Testing MSE

3.2 Comparing Results of Empty and Full BN layers Implementation

Batch normalization is always be implemented after the data input layer, but
multiple BN layers are added after each convolutional layer in order to reduce
internal covariate shift in this paper. The comparing result is shown in the
figure 6, it is easy to conclude that full BN layers implementation can dramat-
ically reduce the training time. One training epoch means feeding the whole
training data to the CNN model. When we use a normal CNN architecture
without full BN layers implementation, the MSE does not reach a acceptable
level until at about 120 epochs. However, when applying full BN layers in
the previous CNN architecture, the testing MSE reaches 1 × 10−3 at about 2
epochs. Moreover, the fluctuation of MSE during the model training has also
been affected by the full BN layers implementation. In figure 6, the amplitude
of the MSE fluctuation is enclosed by two black lines for easily comparing.
When applying full BN layers in the CNN model, the amplitude of the MSE
fluctuation reduce a little bit than that of CNN model without full BN layers
applied.

The given comparing result shows that full BN implementation can highly
reduce the training time, thus being good to the following hyper-parameters
tunning and model constructing. Smaller amplitude of the MSE fluctuation
can lead to easily early-stopping at a appropriate epoch to save the CNN
model.

3.3 Batch Size Influence on the Testing Results

Mini-batch SGD optimized algorithm is used in the neural network training.
Batch size is a highly influential factor on the performance of the CNN model
and an intuitive judgement is that the larger the batch size, the slower the
convergence. From the CNN model tunning experience, using about 1% of the
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Fig. 6 Comparing Results of Empty and Full BN layers Implementation
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Fig. 7 Comparing Result of batch size on the performance of model

training data set as the size of mini-batch is a proper choice. According to
the goal of faster training and best MSE performance, we set the top-level of
comparing batch sizes to be 100. Then five different batch sizes are compared
when we do the mini-batch SGD optimization, and the results are presented in
the figure 7. It is easy to figure out that 10 batch size is an optimal choice for
the improved CNN model. Because under this condition, both fast convergence
and minimum MSE are guaranteed.

3.4 Over-fitting Checking and MSE Quantitative Analysis

A satisfactory testing accuracy is not the end of training a neural network.
Over-fitting is the most likely occur during neural network training. For over-
fitting phenomenon, a simple judgement method is checking the difference
between the training and testing accuracy of the neural network. In the im-
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Table 1 Testing MSE Quantitative Analysis of Different Neural Networks

Network Type MSE Remark

CNN 0.005 Reference[18]
RMLP 0.0009 Reference[17]
IDCNN 0.0003 Our model

proved CNN airfoil lift coefficient prediction model, dropout technique is used
to avoid this problem and the comparing result is shown in the figure 8. The
testing MSE of CNN without dropout is higher than the that of CNN with
dropout in most training epochs, except for a few epochs in the beginning of
the training. It is shown that dropout implementation can reduce the MSE
gap between the training and testing procedure.

Three different neural networks have been compared with the same evalua-
tion criteria MSE and the comparing results are shown in table 1. The list two
other neural networks, CNN and recurrent multilayer perceptron(RMLP), are
also used to predict the lift coefficients. The improved deep CNN model we
proposed have a much smaller MSE than other two neural networks. It demon-
strates that the improved techniques we employed, including BN, dropout and
mini-batch SGD, are feasible and of great value in predicting the airfoil lift
coefficient.

4 Conclusion

An improved deep CNN model for lift coefficient prediction is presented which
uses full BN layers implementation, dropout and mini-batch SGD techniques.
In the preprocessing of the training and testing data, the ”feature-enhanced-
image” method we proposed is utilized and it can gain a effective 85.2% declin-
ing of testing MSE in the model training. Besides, we also add some bad airfoil
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data images into the model training data to enhance the model generalization
ability.

As for the improvements of the ”feature-enhanced-image”, full BN and
dropout methods on the initial CNN model, the comparing results are given
to show that these three techniques are effective in reducing the training time
and increasing the prediction accuracy. The training and testing history is
presented to show that the model we established has a good generalization
ability than other state-of-the-art neural networks. Furthermore, the IDCNN
model we constructed presents a more accurate prediction than other two
neural networks. In conclusion, the IDCNN model we proposed can guarantee
a much less training time and a more precise testing accuracy at the same
time.
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