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Abstract Global navigation satellite systems (GNSS) pro-
vide many more satellites than ever before. However for ap-
plications extremely sensitive to power consumption, not all
satellites can be incorporated into the measurement vector,
either because of the sheer computation overload or for pur-
pose of power saving. These applications include but are not
limited to unmanned aerial system (UAS), flying cars, and
asset tracking. Thus satellite selection methodology should
be used to obtain subset satellites with good geometry. Re-
cently, a downdate method proposed in Receiver Autonomous
Integrity Monitoring (RAIM) can be used for reference in
satellite-selection, although RAIM and GNSS positioning
are quite different. In this paper, a DOP based ultra-rapid
satellite-selection methodology, the direct satellite-selection
(DS) method, is proposed according the downdate method.
Furthermore, to compensate for the shortcomings of the DS
method, a constrained direct satellite-selection (CDS) method
is then proposed by adding error monitoring and restrictive
conditions. The two algorithms are examined for precision
performance and computational performance. Simulation-
s show the DS method performs about 3 order of magni-
tude faster than the recursive method, which is the existing
fastest DOP based algorithm, with 0.25 increase in DOP on
average relevantly when excluding the number of satellites
from 42 to 8. And the CDS method performs about 2 or-
der of magnitude faster than the recursive method with only
0.15 increase in DOP even when excluding satellites from
42 to 6. Consequently, both the two methods have much
lower computation time than all the existing DOP based al-
gorithms, with very little reduction in precision. Compara-
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tively, the DS method has lower computational load and the
CDS method has higher precision. Thereby, the algorithm-
s proposed in this paper successfully address the satellite-
selection problem in two scenarios; the CDS method fits in
fast satellite-selection and high precision situation; the DS
method can be employed in some extremely speed demand-
ing circumstances.

Keywords Direct satellite-selection · Ultra-rapid · Multi-
constellation · GDOP · Recursive method

1 Introduction

The development of multiple constellations provides a high-
er positioning performance by increasing the visible proba-
bility of satellite. It is common for a GNSS receiver observ-
ing a huge number of satellites in some ideal areas. General-
ly, more observed satellites lead to higher positioning accu-
racy. But satellite tracking and position calculations are time
and resource consuming for GNSS receivers. As the num-
ber of observed satellites increasing, more tracking chan-
nels are needed, which means better processor and higher
cost. Meanwhile, GNSS positioning precision depends more
on satellite geometry, rather than number of satellites. Thus
it is impossible for a civilian grade GNSS receiver to take
all-in-view satellites into account. Satellite selection method
should be taken to address this issue.

There are many methods for selecting a set of satellites
to use for GNSS positioning solution. The basic principle
is to minimize the dilution of precision (DOP). Some au-
thors employ satellite measurement error into account, such
as using protection level (VPL and HPL) as the judgmen-
t condition. While, no matter which principle is used, the
ideas are similar and universal. Hence, we just apply DOP
as the judgment condition in this paper.
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Most of the researchers who use DOP as the judgment
condition often use the geometric dilution of precision (G-
DOP). A simple method is the brute force, which enumer-
ates all the permutations to find the optimal one, namely
brute force. Obviously this method is the most time-consuming.
There are several methods to optimize the GDOP based satel-
lite selection. Some authors take efforts to optimize the glob-
al search process using heuristic algorithms. One such method
is to reduce global search time by using genetic algorithms
(GAs) [1]. Similarly, [2] uses a chaotic particle swarm op-
timization (CPSO) method to reduce global search. These
methods can be more optimal than other optimization algo-
rithms, but they are both more time-consuming than others.
As to more efficient methods, inverse lemma is used to sim-
plify the GDOP calculation [3, 4]. It uses recursive thinking
to generate each n-subset from its immediate predecessor by
deleting a single satellite for one time. These methods can be
induced as the recursive method and is much time reducing.

The following shows the computational load of exist-
ing DOP based algorithms. Firstly is the brute force, which
is the most time-consuming. Supposing that the observed
satellite number is n, and the desired number is k, the brute
force method should calculate the GDOP, which contain-
s a huge matrix calculation, for Ck

n times. If set n as 30
(It is a general situation in GPS-GLONASS-BDS system),
and set k as 10, the calculation complex will be 30045015
times. It is hard for a civilian grade GNSS receiver operat-
ing this algorithm in a short time. The CPSO method given
by [2] reduced the calculation time to about 37.5% of the
brute force method, but it is still time-consuming. The recur-
sive method proposed by [4] operated a time-saving perfor-
mance. It reduced the calculation times to ∑n

i=k i. For n = 30
and k = 10, the calculation time is 410, which is much s-
maller than the above method. But the computational time
will grow quadratically when the number of observation in-
creases.

Besides, a number of authors employ alternative perfor-
mance measures beyond DOP [5]. A kind of them is the vol-
ume of the polyhedron method [6, 7], which calculate the
volume of the polyhedron formed by satellites and the us-
er, or employ elevation angle and azimuth angle to divide
satellites into several block and allocate with some logic
[8, 9]. While, the polyhedron based algorithm can reach sub-
optimal but time-consuming, and the latter performs faster
than the recursive method but failed in precision.

Consequently, existing satellite-selection algorithms ei-
ther have unsatisfactory time performance, or failed in pre-
cision. Currently, [10] provided a downdate method in Au-
tonomous Integrity Monitoring (RAIM) for satellite based
augmentation systems (SBAS), with protection level. It can
allow us to directly sort the satellite from the all-in-view ma-
trix, rather than calculating each subset matrix. To address
the satellite-selection problem in low computational load de-

manding situation, we apply the downdate method to the ge-
ometric condition, namely direct satellite-selection method,
using GDOP as the basis for selecting. Then we propose a
constrained direct satellite-selection method to increase ac-
curacy and enlarge usage scope. Comparisons with other al-
gorithms are also given in this paper. Besides, this paper will
discuss how many satellites should be deleted to get appro-
priate GDOP value in a global sight.

2 Direct satellite-selection method

Since the downdate method proposed by [10] was proposed
to select subset satellites with protection level, it is not suit-
able for the multi-GNSS DOP based satellite-selection con-
dition. Formulas need to be redefined.

For a single constellation navigation algorithm, the ge-
ometry matrix GGG contains four columns. But in multi-constellation
system, the most existing constellations are not synchro-
nized with each other, the geometry matrix is defined as fol-
lows [11] (supposing there are L unsynchronized constella-
tions).

GGG =



−e1
rx,1 −e1

ry,1 −e1
rz,1 1 0 0 · · · 0

...
...

...
...

...
...

...
−em1

rx,1 −em1
ry,1 −em1

rz,1 1 0 0 · · · 0
−e1

rx,2 −e1
ry,2 −e1

rz,2 0 1 0 · · · 0
−e2

rx,2 −e2
ry,2 −e2

rz,2 0 1 0 · · · 0
...

...
...

...
...

...
...

−emL
rx,L −emL

ry,L −emL
rz,L 0 0 0 · · · 1


(1)

Where the second of the two subscripts is the constella-
tion number, from 1 to L; and the superscript is the satellite
number within the kth constellation, from 1 to mk. And the
GDOP is formed by the GGG matrix.

GDOP =

√
trace

[(
GGGT ·GGG

)−1
]

(2)

Readers should notice that the GDOP cannot directly rep-
resent the positioning error. The GDOP is just a conversion
from satellite measurement error to positioning error. It is
more suitable to employ protection level to quantify the po-
sitioning error [12]. While, in this paper, we only use GDOP
to get the optimal geometry.

The weight coefficient matrix H is given below

HHH =
(
GGGT ·GGG

)−1
(3)

Rather than computing the inverse matrix, we can use the
inverse lemma to get a recursive formula [10]

HHH(i) = HHH +
SSSiii ·SSST

iii

pi,i
(4)
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SSS =
(
GGGT ·GGG

)−1 ·GGGT (5)

PPP = III −GGG ·
(
GGGT ·GGG

)−1 ·GGGT (6)

where HHH(i) is the weight coefficient matrix with the ith satel-
lite removed, SSSi is the ith column of the /bmS matrix, pi,i is
the element of line i, column i of the PPP matrix. Observe the
formula (4), we can see that

h(i)j, j = h j, j +
s2

j,i

pi,i
(7)

It indicates that when deleting a single satellite, the increase
in GDOP can be obtained by calculating the term s2

j,i/pi,i.
From formula (2), when deleting the ith satellite, we can use
the following formula to express the increase of GDOP2

C(i)
GDOP2 = (

L+3

∑
j=1

s2
j,i)/pi,i (8)

We can calculate each C(i)
GDOP2 of all observed satellite, and

select the satellites with k largest C(i)
GDOP2 values.

We name this method as the direct satellite-selection (D-
S) method. The process is explained as follows.

1) Use formula (1) to compute the GGG matrix with all-in-
view satellites, and get HHH, SSS and PPP matrix and C(i)

GDOP2

from formula (3), (5), (6) and (8) respectively.
2) Find k maximum C(i)

GDOP2 and take the corresponding k
satellites as the desired subset satellites.

We use a group of data collected in Shanghai to examine this
algorithm. The data contains 3 constellations, including G-
PS, GLONASS and BDS, and the observed satellite number
is 27. We use both the DS method and brute force to operate
the data. Figure 1 shows the curve of GDOP changing with
selected satellite number k.

According to figure 1, the DS method is well agreed with
the brute force method if k has a large value. But when k
is getting smaller, the error between the DS method and the
brute force method is gradually increasing, and the error dra-
matically increases when k has down to a small value. It is
impermissible to use the subset satellites as working satel-
lites for positioning when the k falls to small. In short, the
experimental result indicates that the DS method does not fit
in long step judgment. This method should be corrected by
some restrictive conditions.

Generally, the DS method is a preferred algorithm, be-
cause it has a low calculation burden and high precision in
a short step. If users are demanding for a fast satellite se-
lection methodology and do not need to exclude too many
satellites, this method is the most appropriate.
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Fig. 1 Precision performance of the direct satellite-selection method,
compared with the brute force method

3 Constrained direct satellite-selection method

The weakness of the DS method is to be expected. The rela-
tionship between GDOP and C(i)

GDOP2 is

GDOP(i) =

√
GDOP2 +C(i)

GDOP2 (9)

where GDOP(i) is the GDOP value with the ith satellite re-
moved.

The standard of judgment C(i)
GDOP2 can represent the in-

crease of GDOP2 unbiasedly only when k = n−1. To ensure
the precision of formula (9), matrices must be refreshed ac-
cording to (4), (5) and (6) after deleted one single satellite.
Actually, it is similar to the recursive method if we refresh
the matrixes in each step. And it will add a lot of algorithm
complexity.

We can examine the error caused by each step. For the
lth step, the GDOP error is

EGDOPl = GDOP(i)
l −GDOPl (10)

where the GDOP(i)
l is the biased GDOP value calculated by

equation (9).GDOPl is the GDOP value with l selected satel-
lites deleted, it is given by

GDOPl =

√
trace

[(
Gl

T ·Gl
)−1

]
(11)

The absolute value of EGDOPl will continuously increase as
steps go on, and can get a large value. For the data used
before, EGDOPl rises to -0.545 when k = 10, and the value
is about 31% of its GDOPl . It obviously performs an enor-
mous influence to the DS step for tracking the optimal ge-
ometry. Thus the error EGDOPl should be limited in an appro-
priate range. Consider that the gradient of GDOP descent
rises with the increase of l, it is not suitable to set a constant
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threshold to judge EGDOPl . Notice that large EGDOPl will in-
fluence the minimal C(i)

GDOP2 judgment, we employ C(i)
GDOP2

as the threshold. The constraint condition is given as fol-
lows:

EGDOPl > min
1≤i≤n−l

C(i)
GDOP2 (12)

The inequality searches C(i)
GDOP2 of the remaining satellites

for each step. If the constraint condition is satisfied, matrixes
should be refreshed according to (4), (5) and (6) to reset
EGDOPl and enter into a new epoch, this process continues
until l = k. By the way, operators can also set the threshold
as the above elements divided by d for higher precision:

EGDOPl
2 > min

1≤i≤n−l
C(i)

GDOP2/d(d ≥ 1) (13)

The value of d is related to the trade-off between precision
and computational efficiency. In the following sections, our
examinations will mainly focus on inequality (13), since it
already has a good performance.

In order to examine the error value EGDOPl , we need to
obtain the GDOPl in each step. Instead of computing the in-
verse matrix, which is much time-consuming, inversion lem-
ma can be used to optimize the calculation [4]. As a defor-
mation of formula (4), the recursive formula is as follows:

HHH(i) = HHH +
HHH ·gggl ·gggT

l ·HHH
1−gggT

l ·HHH ·gggl
(14)

where ggglll is the row vector deleted from the GGG matrix, and
GDOPl−1 is the GDOP value in the last step. This formu-
la can recursively compute the new GDOP when one sin-
gle satellite is deleted by the DS algorithm. We name this
method as constrained direct satellite-selection (CDS). The
core structure of the CDS method is represented in the scheme
in figure 2, and the methodology is explained step by step in
the following:

1) Use formula (1) to compute the GGG matrix with all-in-
view satellites, and get GDOP, HHH, SSS and PPP matrix and
C(i)

GDOP2 from formula (2), (3), (5), (6) and (8) respective-
ly.

2) Find minimum C(i)
GDOP2 from all remaining satellites and

exclude the corresponding satellite in this step.
3) Compute the new GDOP of this step by formula (14)

and (2).
4) Use formula (9) to calculate the biased GDOP(i)

l . Clear
that this term is not the true GDOP. It is just a roughly
estimated value computed by corresponding elements of
the SSS and PPP matrix.

5) Compute the GDOP error EGDOPl of the lth step by for-
mula (10).

6) Judge the constraint condition given by (12), or (13).
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Fig. 3 Performance comparison between the DS method and the CDS
method

a. If the constraint condition is satisfied, refresh the ele-
ments included in step 1 with the remaining satellites
of last selection step.

b. If the constraint condition is not satisfied, it indicates
that the error is not large enough to enormously in-
fluence the selection process. So the process can be
continued to step 7

7) Examine whether the process reaches the desired satel-
lite number. If not, jump to step 2 to delete more satel-
lites. Or return the final subset satellites.

Using the same data as before, we can get a performance
comparison between the DS method and the CDS method.
The result is shown in figure 3. It indicates that the CDS
method addressed the problem of the DS method and keep
closer to the brute force. While the result discussed before
is just based on a single group of data. The detailed test will
be given in the later section.

Inevitably, the CDS method invested in more comput-
ing time. If the algorithm refreshed elements for ξ times,
the big matrix computation (which is the main part of com-
puting time) contains two parts. On the one hand, the recur-
sive formula (66 matrix for 3 constellations) is calculated
for n− k+ ξ times. On the other hand, the HHH, SSS and PPP ma-
trix (n− l dimensions) is calculated for ξ times. Normally,
the refreshing times ξ is a small number, which is just 4
when selecting 6 satellites out of 27 observations (Using the
data above). Though its computation is larger than the DS
method, it is much smaller than recursive method. The time
performance will be examined in detail later.
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Fig. 2 Schematic overview of the constrained direct satellite-selection method

4 Experiments and discussion

In this section, an assessment of the proposed methodology
will be given by comparing the results with the other meth-
ods, including the brute force and the recursive method.

Firstly, to obtain the performance of the proposed meth-
ods and the others when setting different selected number of
satellites, we observed the satellites, including GPS, GLONASS
and BDS, at Shanghai for 24 hours, with few signal occlu-
sion. We operated four satellite selection algorithms every
10s, setting the desired number to 16, 12 and 10 separately,
and compared them in each measurement time. Results are
shown in figure 4.

According to figure 4(a), when set k = 16 the DS method
and the CDS method both have good performance compared
with the recursive method. The DS method seldom has pro-
truding values. While, according to figure 4(b), there are
more different values between the two proposed method-
s. According to figure 4(c), there are a lot of dramatic in-
creases when using the DS method. Meanwhile, the CDS
method is far more close to the recursive method, and there
is no sharply increasing point during the whole testing time,
though it performed worse than k = 16.

To examine the relationship between the desired num-
ber of satellites and the performance of two proposed meth-
ods, we compared them to the recursive method separate-
ly in each desired number. The result is shown in figure 5.
It is clear that the performance of the two is similar when
the number of selected satellites are above 14. The perfor-
mance of the DS method get worse when the number of se-
lected satellite falls down below 14, and it sharply increases
when the number is below 8. Though the performance of
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Fig. 5 Mean error of 24 hours relative to the recursive method

CDS method also get worse when the number of satellites
decreasing, it is still much better than the DS method.

In order to verify the universality of the algorithms, we
simulated satellites situation by MATLAB in the global range,
also included the three constellations. We examined the DS
method and CDS method globally in 24 hours, and com-
pared them to the recursive method. Both desired number
of satellites k are set as 10. Results are shown in figure 6.
We can see that the ∆GDOP of CDS method is far smaller
than that of DS method. Even the maximum value of CDS
method approximately equal to the minimum value of the
DS method.

We can conclude that the two proposed method perform-
s similar precision with each other when setting k as a big
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(a) k = 16
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(b) k = 12

0 1000 2000 3000 4000 5000 6000 7000 8000

Time / 10s

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

G
D

O
P

Brute force
Recursive
DS
CDS

(c) k = 10

Fig. 4 Comparison of GDOP using the brute force, recursive method, proposed DS method and CDS method for 24 hours. The recursive method
and the brute force are almost overlapped, so only compare the proposed method with the recursive method is sufficient.
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(a) The GDS method

 
(b) The DS method

Fig. 6 Global error relative to the recursive method (k = 10). Note that the error of the GDS method is about one order of magnitude lower than
that of the DS method.

number. While, the CDS performs much better precision
than the DS method when k is small.

Then we tested the computational load. It was discussed
in the previous sections. In the simulation, we will give the
computing time through specific tests. Note that all tests in
this section are operated on the MATLAB environment, and
the hardware setup includes an Intel Core i7-8700 CPU @
3.20GHz and a 16 G RAM @ 2666MHz.

Following the discussion in the previous sections, we
can get the time complexity of the brute force method is
O(Ck

n). And the time complexity of the DS method and the
CDS method is constant order O(1) and linear order O(n).
While the recursive is square order O(n2). Apparently, the
computational load of brute force is several orders of magni-
tude higher than the recursive method and the two proposed
method in almost all cases. It is no need to compare the brute
force method with others. Thus we will not invest the brute
force method into comparison.

Firstly, we simulated 42 observed satellites and used the
recursive method, DS method and CDS method separately
to select 6 to 30 satellites. All data are computed 30 times
per selection epoch and averaged. Figure 7 shows the perfor-
mances of the three algorithms. It is clear that the DS method
takes the shortest time. It is not sensitive to the number of
selected satellites, because it can directly select the subset
satellites, without extra computation when the number of s-
elected satellites changes. Meanwhile, the DS method takes
an order of magnitude higher computation time than the
CDS method. While, the recursive takes much more time.
In theory, both recursive and the CDS method changes its
computing time when changing the desired the number of s-
elected satellites. But in this test, the variances over satellite
number is so small that it is drowned in computer time error
due to unstable frequency. Anyway, it is highly discernable
to judge the computing time between the three algorithms.
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Fig. 7 Average computation time per selection when selecting 6 to 30
satellites out of 42 observed satellites

In figure 8, the computation time versus the number of
observed satellites is given. We set the desired satellite num-
ber as 10, and generated 18 to 42 observed satellites in each
epoch. It is shown in the figure that sequence of the three
methods do not change in this case, and both the DS method
and the CDS method are also not sensitive to the number of
observed satellites. While, as for the recursive method, com-
putation time increase as the observed satellites increasing.
It is reasonable, because it must compute bigger matrix for
several times when all-in-view number rising.

Consequently, the DS method performed the best in the
computation load case, and the CDS method did not cause
so much extra computation time compared to DS. However,
the recursive method performed a much longer computation
time, especially when the number of observed satellites is
great. Hence, the best choice is the DS method in terms of
efficiency, followed by the CDS method.
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Fig. 8 Average computation time per selection when selecting 10
satellites out of 18 to 42 observed satellites

According to the performance tests shown above, it is
safe to say that either the DS method or the CDS method
is very fast satellite selection algorithm, with decent perfor-
mance. To comparison, the DS method has the most effi-
cient computational capacity but has unsatisfactory preci-
sion when the number of subset satellites is low. The CD-
S method has excellent performance covering all satellite
quantity circumstances, with a larger computational time than
the DS method. We suggest users use the CDS method when
operating satellite selection because its high adaptability and
fast computational performance, unless very short computa-
tional time is demanded.

The methods can also be used to automatically optimize
GDOP value. When considering on the desired precision, it
is more suitable to focus on maximal (or alert) GDOP, rather
than the number of desired satellites, since the number of
satellites and the value of GDOP are not absolutely corre-
sponding and for fixed satellite numbers, satellites with bet-
ter geometry can have a smaller GDOP value. Just as what
figure 4(a)-4(c) indicate, take the most optimal one, recur-
sive method, as an example, the GDOP changes with time
changing when setting the stable number of subset satellites.
Hence, in the actual operation, manufacturers can take the
discussion above for guidance to decide how the number of
subset satellites fits the GDOP value.

As we mentioned before, satellite measurement error is
not included in the geometric selection method. Thus users
should take care of the multipath, ionosphere error, and oth-
ers for some satellite. The DS and the CDS method both pre-
fer to select satellites with low elevation angle, which may
have huge measurement error, such as multipath. The kind
of satellites with low performance should be excluded be-
fore operating the satellite selection algorithms.

5 Conclusions

In this paper, two ultra-rapid satellite-selection algorithms
were proposed, namely DS and CDS. We have identified the
high computational time of the brute force, and demonstrat-
ed that even the current most efficient DOP based algorith-
m, recursive, could cost several orders of magnitude higher
time to achieve satellite selection. We have also pointed out
the different precision range of the two proposed methods.

Simulations showed that the DS method could save com-
putational time for about three orders of magnitude lower
than the recursive method, and the CDS method saved the
time for about two order of magnitude lower. Both the two
proposed methods showed almost the same precision perfor-
mance when reducing the number of satellites from 42 to 16.
Precision performances decrease when further reducing the
number, with about 0.25 increase in DOP for the DS method
relative to the recursive and about 0.10 for the GDS method,
when reducing subset from 42 to 8. While, the error of the
DS method could be large when the number falls below 8,
but the CDS method kept high precision, which was about
0.2 error relative to recursive method. Thus, both of the t-
wo proposed methods have much lower computational load
than existing DOP based satellite-selection algorithms and
have very little decrease in precision.

Operators are suggested to use the CDS method for satel-
lite selection for its high adaptability and fast computational
performance. In very short computational time desired situ-
ation, special embedded system or other similar conditions,
the DS method can be employed.
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