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Abstract Equations of motion for flexible aircraft can be developed by ap-
plying Lagrange’s formulation and the principle of virtual work. These equa-
tions involve two different kinds of general coordinates, discrete variables (six
degrees-of-freedom motion of the floating coordinates) for ordinary differen-
tial equations and distributed variables (displacements) for partial differential
equations. Usually, the finite element method is used to discretize the dis-
tributed variables, resulting in more unknown variables than the number of
equations. Therefore, these equations are not solvable unless reference condi-
tions are defined. Two different methods were developed to solve this problem.
One was put forward by David Schmidt using the method of mean-axis. How-
ever, this method was questioned by Leonard Meirovitch, who suggested that
reference coordinates should be fixed on the material points. In order to prove
the correctness of their respective theories, two scholars proposed articles that
question each other. In this paper, a more general method is developed by
introducing six Lagrange multipliers into equations, and it shows how the
constraints are imposed on the reference coordinates. The above two meth-
ods can be derived as two special cases by setting special constraints, and are
proved both correct. In addition, the general method suggests that the method
of mean-axis are more precise and closer to the real situation.
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1 Introduction

Dynamics of unrestrained flexible aircraft were investigated by researchers
since decades ago to solve the aeroelasticity problems. Cavin[6] derived the
equations of motion and deformation of the flexible body via Hamilton’s Prin-
ciple. He used finete element method to discretize this continuous system and
chose mean-axis method to constrain the reference frame assumed that “what-
ever axis system is used, the small deformation assumptions of the infinitesi-
mal theory of elasticity hold”(page 1686, column 2). There exists at least three
method to constrain the reference frame :fixed to structure on an element,fixed
relative to the axes of the principle moments of inertia and fixed to mean-axis.

Mean-axis frame consists of six constrains that minimize the kinetic energy
of the flexible movement. This method will decouple the rigid-body motion
from elastic deformation, greatly simplfy the equations. Mr Schmidt[5][11][12]
had done a lot of researches on the control method of the flexible aircraft based
on this reference frame .Nodal-fixed method are adopted by Mr Meirovitch[1][2].
He successfully applied this theory to the modeling and control of flexible satel-
lite.

There are also other research groups like Cesnik[14] are doing more in-depth
study on nolinear flexible aircraft. Their researches are basically based on these
two reference frames, this would not be discussed due to space limitation. In
this papaer, a more general method is introduced and concentrated on the
diffrences of stiffness matrix between nodal-fixed frame and mean-axis frame.

Equations of motion for flexible aircraft can be developed by applying
Lagrange’s formulation and the principle of virtual work. A body-reference
frame XYZ as shown in Fig. 1 is required firstly to describe the motion of
flexible aircraft. This is similar to rigid-body aircraft except that elements on
flexible plane will move relatively to the body-reference frame. Without special
explanation, aircraft described in the rest of the paper is flexible.

Fig. 1 Element position of flexible aircraft.where R is the location of the mass element, R0

stands for the location of reference frame relative to the inertial frame X0Y0Z0, p0 denotes
the location of the mass element of undeformed aircraft relative to the reference frame XYZ,
and u is the deformed displacement of the mass element relative to the undeformed location.
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Consider a mass element of the aircraft. Referring to the vector triangle in
Fig. 1 gives

R = R0 + p = R0 + p0 + u (1)

Taking time derivative of Eq. (1) gives the element velocity vector.

dR

dt
=

dR0

dt
+ ω × p +

∂u

∂t
(2)

where ω is the angular velocity vector of reference frame d
dt means time deriva-

tive relative to the inertial frame, ∂
∂t is the time derivative relative to the

reference frame. The kinetic energy T can then be written as

T =
1

2

∫
v

dR

dt
· dR

dt
ρ dv (3)

Representing vectors in Eq. (2) with coordinates gives another expression of
the velocity vector, which enables quantitative analysis.

dR

dt
= ebT

[
CbrṘr

0 + ω̃b
(
pb0 + ub

)
+ u̇b

]
(4)

where eb denotes the reference frame, er denotes the inertial frame,Cbr denotes
the direction cosine matrix from er to eb, the right superscripts ‘(·)b’ denotes
the coordinates relative to eb, superscripts ‘(·)r’ denotes that we represent the

coordinates relative to er, over-score ‘(̃·) ’ denotes a skew-symmetric matrix
derived from a 3× 1 vector.

The potential energy is effected by gravity and strain.

V = Vg + Ve (5)

where the gravitational potential Vg is expressed as

Vg = −
∫
v

R · gρ dv (6)

For the elastic potential energy, its expression for a continuous system is very
complicated and is not included here due to space limitation, Please refer to
[1] for more information. In the research done by Meirovitch and Schmidt,
elastic deformation of the aircraft is described using shape functions.

u (x, y, z, t) =

∞∑
i=1

φi (x, y, z) ηi (t) (7)

where φi (x, y, z) are space-dependent shape functions and Φ = [φ1 φ2 · · ·]
is the united form of φi (x, y, z), ηi (t) are time-dependent generalized coordi-
nates and η = [η1 η2 · · · ] is the united form of ηi (t). Then the continuous
system can be discretized and simplified by using Rayleigh-Ritz or Galerkin
method to approximate the strain energy,

Ve =
1

2
ηTΦTKΦη (8)
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where K denotes the stiffness matrix and will be discussed in details later.
The generalized forces needed by Lagrange’s formulation are derived by

principle of virtual work. It is contributed by distributed aerodynamics and
the thrust force of engine.

δW =

∫
v

fA · δR dv + FE · δRE = FT δRb
0 +MT δθ +

n∑
i=1

Qiδηi (9)

where fA denotes the distributed aerodynamics, it should be represented in
the body-reference frame. fE denotes the thrust force, whose direction actually
varies with the elastic displacement but ofen neglected.

Finally, applying the Lagrange’s formulation gives the hybrid equations
of motion in terms of quasi-coordinates[2], which are used in the Lagrange’s
formulation when state variables and its derivatives are located in different
frames of coordinates.

d

dt

(
∂L

∂Ṙb
0

)
+ ω̃b ∂L

∂Ṙb
0

− Cbr ∂L

∂Rr
0

= F

d

dt

(
∂L

∂ωb

)
+ ω̃b ∂L

∂ωb
+ ˜̇Rb

0

∂L

∂Ṙb
0

−
(
DT
)−1 ∂L

∂θ
= M

d

dt

(
∂L

∂η̇

)
+
∂L

∂η̇
= Q

(10)

where the Lagrangian is L = T −K. Note that kinetic energy T and poten-
tial energy V involve two different kinds of generalized coordinates, discrete
variables ( Rb

0 and ω ) for ordinary differential equations and distributed vari-
ables u for partial differential equations. Here distributed variables u have been
discretised using shape functions.

2 Two special methods

The set of equations in Eqs. (12) cannot be solved because the reference
frame is not constrained. It is important to note that the choice of the reference
frame in Eq. (1) is arbitrary, which can even be fixed onto the inertial reference
frame. However, this has to be done carefully because it might be hard to find a
suitable mode for these arbitrarily chosen reference frames due to non-constant
stiffness matrices. There are two methods to constrain reference frames, whose
frame we choose is defined by the system itself rather than by just giving a
motion function.

1)The frame is fixed in the undeformed body, also known as the nodal fixed
frame. This type of constrained reference frame is more adopted by researchers.
The fixed mass element (reference frame) is treated as a “rigid body” and flies
like a rigid-body aircraft, while other elements can be treated as “cantilever
beams” clamped at the fixed element. Modes choosen from this type of “bea”
usually have higher eigenvalues than free-free mode.
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2) The frame is moving relative to the undeformed body, also known as the
mean-axis frame[8]. Initially, the origin of mean-axis frame is located at the
center of mass of the aircraft. The orientation and displacement of the frame
is constrained by the following two conditions.

∫
v

∂u

∂t
ρ dv = 0∫

v

(p0 + u)× ∂u

∂t
ρ dv = 0

(11)

These two constraints happen to be satisfied for free-free mode shapes. With-
out any boundary conditions, the free vibration normal modes of a free beam
consist of 6 rigid-body modes and n-6 orthogonal modes, where n denotes infi-
nite dimension. The mean-axis frame can decouple the rigid-body movements
and elastic deformations, and is thus more practical from an engineering ap-
plication point of view. However, Mr Meirovitch questioned this method and
claimed it wrong in his article[4](page 503, column 2):

1) “A paradox arises when mean axes are used and the flexibility is modeled
by a number of shape functions smaller than or equal to six, as in these cases
the number of elastic degrees of freedom is either negative or zero, which is a
physical impossibility.”

2) “Yet, there is no indication in Refs. 6,7 that the aerodynamic forces
were ever transformed from the original body axes to the mean axes, which
raises additional doubts about the validity of the formulation.”

These two questions were not well answered in the Schmidt’s article. He
responded that “The shape functions used in Rayleigh-Ritz formulation are
the free-vibration normal modes of deformable body” and “Such coupling is
obviously present and has been of fundamental interest in the modeling and
analysis of the dynamics of rigid atmospheric vehicles since 1904.”[5](125501-
4,column 2).

Actually, The problem arose when they adopted the mode shapes to re-
duce the nodal deflection degrees-of-freedom. For a discretized system with n
degrees of freedom, the problem described by Eq. (13) is absolutely unsolv-
able because 6 additional variables (“rigid-body” movement of the reference
frame) are introduced when the reference frame is introduced. Only when 6
extra variables are constrained could the equations be solvable. One way is
to directly define a motion function for the frame. Another is to finding six
boundary conditions to constrain the axis. Essentially, the answer for the first
question of Meirovitch is: the 6 “missing” degrees of freedom are expressed as
rigid-body rotations and translations.

3 A general method for dynamics modelling of flexible aircraft

The introduction of reference frame results in six more unknown variables
than the number of equations. For ease of formula derivation, the Lagrangian
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formula is expressed as ÎTMÎ −ÎTM ˆ̃pb ÎTM

− ˆ̃pbTMÎ − ˆ̃pbTM ˆ̃pb − ˆ̃pbTM

MÎT −M ˆ̃pb M


(3n+6)×(3n+6)

R̈b
0

ω̇b

ˆ̈ub

 =

fRfω
fo

 (12)

note that variables describing the elastic movement are element displacement
ub of n discrete elements, not generalized coordinates η. Regardless of moment
of inertia of each element,Suppose the discrete system has 3n translational
degrees of freedom. It is important to note that the generalized mass matrices
in Eqs. (14) has 3n+ 6 rows and 3n+ 6 columns, with 6 redundant equations
more than it should be. The forces in the above equation are given by



fR =ÎTM ˆ̇̃ubωb − ω̃b
[
ÎTMÎṘb

0 − ÎTM ˆ̃pbωb + ÎTM ˆ̇ub
]
− ÎTMÎCbrg + F

fω =ˆ̇̃ubTMÎṘb
0 −

(
ˆ̇̃ubTM ˆ̃pb + ˆ̃pbTM ˆ̇̃ub

)
ωb + ˆ̇̃ubTM ˆ̇ub − ω̃b

(
− ˆ̃pbTMÎṘb

0

+ˆ̃pbTM ˆ̃pbωb − ˆ̃pbTM ˆ̇ub
)
− ˜̇Rb

0

(
ÎTMÎṘb

0 − ÎTM ˆ̃pbωb + ÎTM ˆ̇ub
)

+M

fo =M ˆ̇̃ubωb −Kûb +
dT

dû
+Q

(13)
where over-score ‘̂·’ denotes a united form of element information. For example,

Î =
[
I · · · I

]T
3n×3 is a united form of 3-order identity matrix, ˆ̃pb =

[
p̃b1 · · · p̃bn

]T
,

and ˆ̃ub =
[
ub1 · · · ubn

]T
3n×1. M is a mass matrix, M =

m1I 0 0

0
. . . 0

0 0 mnI


By introducing six Lagrange multipliers into equations, the constraints

are imposed on the reference coordinates. Constrains applied by the reference
frame can be written in a uniform expressions.

H (q, t) = 0 (14)

where q = (q1 q2 · · · qs) is the generalised coordinates vector, and t is in-
cluded if constrains are related to time. According to virtual displacement
principle, the uniform expression of constrains equations for speed and accel-
eration are :

Ḣ = Hq q̇ +Ht = 0

Hq q̈ = −
[
(Hq q̇)q +Hqtq̇ +Htq q̇ +Htt

] (15)

where γ = (Hq q̇)q +Hqtq̇ +Htq q̇ +Htt. Combine the Eqs. (17) with the Eqs.
(14), and the augmented formula equation is

ÎTMÎ −ÎTM ˆ̃pb ÎTM 0

− ˆ̃pbTMÎ − ˆ̃pbTM ˆ̃pb − ˆ̃pbTM 0

MÎT −M ˆ̃pb M HT
û

0 0 Hû 0


(3n+12)×(3n+12)


R̈b

0

ω̇b

ˆ̈ub

µ

 =


fR
fω
fo
γ

 (16)
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where Hq =
[
06×6 H

T
û

]
. Consider the third row in the above matrix equation.,

MÎR̈b
0 −M ˆ̃pbω̇b +M ˆ̈ub +HT

û µ = fo (17)

Then element acceleration ˆ̈ub can be expressed. Substituting ˆ̈ub into constrains
Eqs. (17), and extracting µ give

µ =
(
HûM

−1HT
û

)−1 [
HûM

−1
(
fo −MÎR̈b

0 +M ˆ̃pbω̇b
)
− γ
]

(18)

Set parameters K ′ and K ′′

K ′ = HT
û

(
HûM

−1HT
û

)−1
HûM

−1

K ′′ = HT
û

(
HûM

−1HT
û

)−1 (19)

Insert µ back to the Eq. (20), and the third row would be reduced to

MÎR̈b
0 −M ˆ̃pbω̇b +M ˆ̈ub +K ′

[(
fo −MÎR̈b

0 +M ˆ̃pbω̇b
)]
−K ′′γ = fo (20)

Rebuild the Eq. (18) ÎTMÎ −ÎTM ˆ̃pb ÎTM

− ˆ̃pbTMÎ − ˆ̃pbTM ˆ̃pb − ˆ̃pbTM(
Ī −K ′

)
MÎT −

(
Ī −K ′

)
M ˆ̃pb M


(3n+6)×(3n+6)

R̈b
0

ω̇b

ˆ̈ub

 =

 fR
fω(

Ī −K ′
)
fo +K ′′γ


(21)

where Ī denotes Identity matrix of order 3n. Eq. (21) seems also unsolvable.
However, elastic deformation ûb has only 3n − 6 degrees-of-freedom and can

be solved by left multiply the matirx

I 0 0
0 I 0
0 0 Φ′T

, where Φ′ consists of 3n − 6

shape functions(not modes) when ûb = Φ′η.

3.1 Nodal fixed reference frame

Firstly, locate the reference frame on an element o. The displacement of
element o relative to reference frame should be zero. Then, describe the ori-
entation of the frame with another two elements j and k. Let x axis cross the
element j and keep the element k always on the x-y plane.

uo = [0 0 0]
T
, uj = [x 0 0]

T
, uk = [x y 0]

T
(22)

They are 6 constrain equations,expressed then as the form in Eq. (14).

Hû =

[
I6×6

0(3n−6)×6

]T
= 0 (23)
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Insert Eq. (23) back to K ′ and eliminate the K ′′ when γ = 0.

K ′ = HT
û

(
HûM

−1HT
û

)−1
HûM

−1 =

[
I6×6 0

0 0

]
3n×3n

(24)

Ignoring the effect of dynamic stiffening[13], the third row in Eq. (16) can be
written as the form of block matrix.[

Mmm Mmn

Mnm Mnn

] [
ˆ̈um
ˆ̈un

]
+

[
06×6 0

0 I(3n−6)×(3n−6)

]
K

[
ûm
ûn

]
=

[
Qm

Qn

]
(25)

where ûm = [uox uoy uoz ujy ujz ukx] = 0 denotes the 6 fixed degrees-
of-freedom, ûn denotes the n-6 remaining unconstrained degrees-of-freedom.

Mnn ˆ̈un +Knnûn = Qn (26)

Eq. (26) implies that the order of Eq. (12) with 6 additional degrees-of-freedom
is reduced to 3n, leading to a solvable equations.

3.2 Mean-axis reference frame

Express the constrains of mean-axis frame described in Eqs. (14) into matrix
form : 

ÎTM ˆ̇ub = 0

ˆ̃pT0M ˆ̇ub = 0

ÎTM ˆ̃pb0 = 0

⇔


ÎTM ˆ̈ub = 0

ˆ̃pT0M ˆ̈ub = 0

ÎTM
(

ˆ̃pb0 + ûb
)

= 0

⇒ Hû =

[
ÎTM
ˆ̃pbT0 M

]
(27)

Insert Eqs. (27) into Eqs. (16), some coupled terms in generalized mass matrix
would be decoupled. ÎTMÎ 0 0

0 − ˆ̃pbTM ˆ̃pb 0(
Ī −K ′

)
MÎT −

(
Ī −K ′

)
M ˆ̃pb M

R̈b
0

ω̇b

ˆ̈ub

 =

 fR
fω(

Ī −K ′
)
fo

 (28)

where

K ′ = M
[
Î ˆ̃pb0

] [mI 0

0 ˆ̃pbT0 M ˆ̃pb0

] [
ÎT

ˆ̃pbT0

]
(29)

Ignoring the effect of dynamic stiffening, the third row in Eq. (16) can be
written as

M ˆ̈ub +
(
Ī −K ′

)
Kûb =

(
Ī −K ′

)
Q (30)

modes of the Free-vibration are used as shape functions to find the modes
associated with mean-axis frame. Left multiply both sides of the Eq. (28) by

matirx

I 0 0
0 I 0
0 0 Φ′T

,then we get the result suggested by Schmidt.

ÎTMÎ 0 0

0 − ˆ̃pbTM ˆ̃pb 0
0 0 Φ′TMΦ′

R̈b
0

ω̇b

η

 =

 fR
fω

Φ′T fo

 (31)
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4 discussion

There exists only one truth for a real motion of an aircraft whatever reference
frame we adopt. Suppose that both two reference frame used by Schmidt
and Meirovitch are reasonable, then the kinetic energy and potential energy
corresponding to each other should be the same. Let Rreal be the real motion
of the aircraft and describe this motion using reference frame eb1 and eb2

respectively.

Rreal = R1 + p1 + u1 = R2 + p2 + u2 (32)

u2 could be represented by u1. The potential energy due to elastic deformation
in reference frame eb1 could be written as

Ve =
1

2
ûb2TKb2 ûb2 =

1

2
ûb1T

[
Ĉb1b2Kb2Ĉb2b1

]
ûb1 (33)

where Ĉb1b2 is united form of direction cosine matrix Cb1b2 between frame eb1

and eb2 . Stiffness matrix K would vary with time when relative motion of these
two frames exists. Only one type of reference frame makes its corresponding
stiffness matrix a constant. call this type of frame the based reference frame.

Firstly discuss the nodal-fixed frames in Fig. (2), in which eb1 is rotating
relative to eb2 . It is hard to find a nodal-fixed reference frame that let stiffness
matrix K happen to be a constant.

Fig. 2 nodal-fixed frames fixed on different elements of the free beam. Frame eb1 is fixed
to somewhere of the beam and eb2 is fixed to middle. eb1 is rotating relative to eb2 .

Another requirement is that the eigenvalues shall not change whatever
reference frame we adopt. From this, Mean-axis is the true reference frame for
a free structure. However, given the condition that the beam is fixed at one
end, it is nodal-fixed frame that let K be a constant.

Boundary conditions will change the structure’s stiffness when forces cou-
pled with the structure and feedback to structure itself, Qm = −Kmnûn for
example. It is hard to say which frame and modes are right because aerody-
namics can also be expressed like feedback forces.
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5 Conclusion

A more general method is introduced in this paper. This method is based
on the application of six Lagrange multipliers into equations. Reference frame
could be settled once when six constrains are confirmed, mean-axis and nodal-
fixed frame are merely special cases of the general method. More important is
that only one type of reference frame has a constant stiffness matrix K. Others
who rotate relative to it will have a time-varing matrix K. Mean-axis is true
axis when structure is free, and nodal-fixed frame is suitable when structure
is fixed on wall like a cantiver beam. For more accurate modeling of aircraft,
one way is to take into account the stiffness effected by aerodynamics firstly
and then find the based reference frame in turn. The changed stiffness matrix
is (Ī −K ′)(I −K)K where (I −K) denotes the change of matrix K due to
the aerodynamics. Whatever, the mean-axis is closer to the truth. Because a
real flexible aircraft won’t always be mounted on the bracket in wind tunnel.

References

1. Meirovitch L, Computational methods in structural dynamics[M], Springer Science &
Business Media, 1980.

2. Meirovitch L, Hybrid state equations of motion for flexible bodies in terms of quasi-
coordinates[J], Journal of Guidance,Control,and Dynamics, 1991, 14(5): 1008-1013.

3. Meirovitch L, Quinn R D. Equations of motion for maneuvering flexible spacecraft[J],
Journal of Guidance,Control,and Dynamics, 1987, 10(5): 453-465.

4. Meirovitch L, Tuzcu I, The lure of the mean axes[J], Journal of Applied Mechanics, 2007,
74(3): 497-504.

5. Schmidt, David K, Discussion:“The Lure of the Mean Axes”(Meirovitch, L., and Tuzcu,
I., ASME J. Appl. Mech., 74 (3), pp. 497–504), Journal of Applied Mechanics, 82.12
(2015): 125501.

6. CAVIN III, R. K., and A. R. Dusto, Hamilton’s principle-Finite-element methods and
flexible body dynamics, AIAA Journal, 15.12 (1977): 1684-1690.

7. Agrawal, O. P., and A. A. Shabana, Application of deformable-body mean axis to flexible
multibody system dynamics, Computer Methods in Applied Mechanics and Engineering,
56.2 (1986): 217-245.

8. Nikravesh, Parviz E, Understanding mean-axis conditions as floating reference frames,
Advances in computational multibody systems. Springer, Dordrecht, 2005. 185-203.

9. Meirovitch, Leonard, and Ilhan Tuzcu, Integrated Approach to Flight Dynamics and
Aeroservoelasticity of Whole Flexible Aircraft-Part I: System Modeling, AIAA Guidance,
Navigation, and Control Conference and Exhibit, 2002.

10. Schmidt, David K, MATLAB-based flight-dynamics and flutter modeling of a flexible
flying-wing research drone, Journal of Aircraft, 53.4 (2015): 1045-1055.

11. Schmidt, David K., Wei Zhao, and Rakesh K. Kapania, Flight-Dynamics and Flut-
ter Modeling and Analyses of a Flexible Flying-Wing Drone-Invited, AIAA Atmospheric
Flight Mechanics Conference, 2016.

12. Danowsky, Brian P., David K. Schmidt, and Harald Pfifer, Control-Oriented System
and Parameter Identification of a Small Flexible Flying-Wing Aircraft, AIAA Atmospheric
Flight Mechanics Conference, 2017.

13. Zhang, D. J., and R. L. Huston, On dynamic stiffening of flexible bodies having high
angular velocity, Journal of Structural Mechanics, 24.3 (1996): 313-329.

14. Shearer. C. M, Carlos E. S. Cesnik. Nonlinear Flight Dynamics of Very Flexible Air-
craft[J]. Journal of Aircraft, 2007, 44(5):1528-1545.

15. Schmidt, David K, Modern flight dynamics, New York: McGraw-Hill, 2012.


