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Abstract The number of resident space objects (RSOs)

in orbit has increased dramatically within the last ten

years. While RSOs pose a serious challenge to our con-

tinued use of space, these objects also provide an oppor-

tunity to improve on-orbit state estimation. Spacecraft

star trackers are commonly used to determine the ori-

entation of its host spacecraft but these sensors are also

capable of detecting RSOs. These detections contain or-

bital positional information that traditional star-images

lack and could allow star trackers to provide both po-

sition and attitude state estimates.

In order for RSO-based optical navigation to be

commercially viable, a reliable filter covariance esti-

mate is required. This paper introduces an Unscented

Kalman Filter (UKF) for estimating an observing space-

craft’s position and attitude based on RSO observa-

tions. To ensure this filter is reliable, a technique for

bounding the estimate error with the moving standard

deviation of its error and the square root of its covari-

ance is introduced. This method provides strong indi-

cator for the reliability of an estimate.
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In developing this work, several integrators were ex-

amined and an improvement was made for applying the

Euler method to state estimation by adding the local

truncation error (LTE) to the system’s process noise.

This addition provides a small but noticeable decrease

in the number and magnitude of error spikes in the

resulting state estimates and allows the method to per-

form better at larger time steps than the standard Euler

method.
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1 Introduction

Spacecraft navigation and controls engineers are accus-

tomed to extracting data from multiple sources in an

effort to accurately determine a spacecraft’s attitude,

attitude rates and orbital parameters [1]. Star track-

ers, gyros, accelerometers, sun sensors, earth horizon

sensors, magnetometers and GPS receivers are all com-

monly used sensors used for spacecraft navigation and

control.

The purpose of this research is to investigate new

ways to obtain more performance out of less equip-

ment, thereby reducing the overall cost and complexity

of satellite missions. Specifically, by extracting more in-

formation from star trackers, satellite designers may be

able to one day improve the navigational (both attitude

and orbit) solution while simultaneously reducing the

cadre of sensors required to complete a given mission.

Researchers such as Crassidis et al. [2] and Junk-

ins et al. [3], have examined methods of optical space-

craft navigation, focusing on rendezvous and docking

applications in which an observing spacecraft is less



2 Matthew Driedger et al.

than 100 meters from an observed-object. Hu et al.

have explored the feasibility of using optical naviga-

tion at greater distances, examining how a satellite in

low Earth orbit could use optical sightings of a reference

satellite in geostationary Earth orbit to estimate the ob-

server’s state [4]. Previous research in optical navigation

has relied on custom sensors such as VISNAV [3], but

many satellites already include powerful optical navi-

gation sensors in the form of star trackers.

Star trackers have had to become increasingly intel-

ligent to reject “false” star images arising from glinting

space objects in order to compensate for the increased

density of resident space objects (RSOs). These algo-

rithms attempt to identify non-star images and actively

reject them prior to forwarding the starfield image to

the guide star catalog correlator for identification [5].

Star trackers have become sophisticated enough that

star trackers can be used as a tool for detecting and

cataloging RSOs [6].

As space commerce continues to grow, so does the

density of space assets in “popular” orbits (low earth

orbit, polar orbits, sun synchronous orbits and geosta-

tionary orbits) [7]. These assets are largely comprised

of spent rocket bodies and satellites (many have been

inactive for years or decades). Similar to the meticulous

measurements astronomers take to map the location of

stars in the sky [8], space researchers and military orga-

nizations such as the United States Strategic Command

measure and track orbital parameters of most RSOs

larger than 5 cm in diameter [9], [10].

Using commercially available star trackers and ref-

erence objects from existing RSO databases, an observ-

ing satellite could use optical navigation techniques for

orbit determination, similar the methods proposed by

Hu [4]. On a small scale, the concept of using other

space assets to assist in navigation is not new. Previous

research has studied ways in which a fleet of cooper-

ative spacecraft could decentralize their fleet state es-

timation (orbital determination) using GPS and local

transmitters that measure the relative distance and ve-

locity (using Doppler measurements) between pairs of

spacecraft in the fleet [11], [12], [13].

Preliminary research has indicated that RSO-based

optical navigation is possible, using a small number of

reference objects in various orbits [14]. However, the

non-linear and non-Gaussian nature of our measure-

ment equation make using these measurements chal-

lenging. In our previous work, we used an Extended

Kalman Filter (EKF) to estimate a simulated observer’s

state using a combination reference points modelling

RSOs and stars. The Extended Kalman Filter is a pop-

ular method for estimating the state of non-linear dy-

namic systems and locally linearizes the system around

its mean and covariance prior to predicting its state

[15].

While our previous work was promising and the

EKF converged onto a steady state, the estimator errors

were not bounded by the convariance estimates. A ma-

jor barrier to technology adoption and commercializa-

tion in the space industry is trust. Without a trustwor-

thy metric (such as the estimated covariance), space-

craft designers are understandably cautious of new nav-

igation schemes out of fear that the solution could un-

knowingly diverge, leading to catastrophic spacecraft

failures. As a result, a better navigation solution than

the EKF is required that provides a reliable covariance

estimate. To this end, this paper examines the use of an

Unscented Kalman Filter (UKF) for RSO-based optical

navigation. Unlike the EKF, the UKF does not locally-

linearize a system and so it is better suited to highly

non-linear models [16], [17].

Reliability and predictability are key to the adop-

tion of new technologies by the space industry [18]. To

help gauge the reliability of our state estimates, we have

calculated the moving standard deviations for all esti-

mate errors. For a well-behaved filter, this 'true'standard

deviation should be less than or equal to the standard

deviation predicted by the filter (by the square root of

the covariance).

In addition, we examine the effectiveness of several

integrators, including an improvement for applying the

Euler method to state estimation by adding the local

truncation error (LTE) to the system’s process noise

as a means of capturing integration error as well as

the typical unmodeled dynamics into the filter’s process

noise.

2 Problem Formulation

First, let us explore a simplified two-dimensional model

of the relationship between an observer (the observing

satellite attempting to use RSO and star measurements

for navigation) and a detectable object (e.g., an RSO

or star).

Consider an observer moving in a circular path (or

orbit) and a fixed object as shown in fig. 1. Our goal in

this work is to estimate the position, attitude and rates

of the observer using angular measurements between

the observer and various objects.

The observer has a position of r = [x, y]
T

and an

attitude angle of φ. The observer detects the relative

angle θ between its local frame of reference and the

fixed object. We assume that the observer has access to

a database of objects and thus, we know the position

of the object. Let the global position of the object be
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Fig. 1 An observer in a circular orbit detecting the angle
between its internal reference frame and an external object i.

rri = [xri, yri]
T

and let (∆x,∆y) denote the relative

position of the object with respect to the observer. From

fig. 1 we note that:

tan(θ + φ) =
∆y

∆x
=
yri − y
xri − x

(1)

Assuming that the position of the observed object is

known, we can express the observed angle measurement

θ as a function of the observed object’s position and the
observer’s position:

θ = tan−1
[ yri − y
xri − x

]
− φ (2)

The measurement θ mimics the measurement we

would obtain from a star tracker. In reality, a star tracker

would return the position of a centroided image on

an imaging plane. However, for simplicity, we have as-

sumed that this transformation between the imaging

plane and the angle has already happened. It should be

noted that this model also assumes that the observed

objects are fixed and continually observable. Owing to

the highly nonlinear natures of Equation 2, the result-

ing measurements from this model have a non-Gaussian

distribution.

Note that the authors purposefully chose to develop

this filter using two translational dimensions and one

rotational dimension to keep the filters and underly-

ing model simple and understandable. We believe that

adding additional degrees of freedom will not have a sig-

nificant effect the feasibility of this navigational method,

nor would they change the covariance analysis that this

paper presents.

3 Navigation Filter Design

The authors developed a series of filters based on the

previously-described geometry of fig. 1 to determine a)

if an observer’s state can be estimated using the mea-

surement equation (equation 2) and b) if the resulting

filter covariance bounds the actual estimator error, as a

means of providing confidence in the method. Continu-

ing on previous work [14], an Unscented Kalman Filter

(UKF) was used to estimate our observing satellite’s

state using Euler and 4th order Runge-Kutta integra-

tion methods. We chose to use a UKF, per the methods

of [20], as we believed that a UKF could accommodate

our non-linear measurement estimate better than the

previous EKF [19], leading to a more truthful covari-

ance estimate. Additionally, we chose to examine the

effects of Euler and 4th order Runge-Kutta integration

methods on the accuracy and trustworthiness of the fil-

ter.

The observer’s state matrix X was defined, as seen

in equation 3, including the observer’s position and ve-

locity in x and y as well as the observers attitude φ and

rotational velocity φ̇.

X =
[
x y ẋ ẏ φ φ̇

]T
(3)

As we have chosen to use Cartesian coordinates to

describe the observer’s dynamics in a circular orbit, the

control force exerted on the observer in x and y is a

function of its previous position:

Fx(t) = − 4π2x2

mT 2|r|
(4)

Fy(t) = − 4π2y2

mT 2|r|
(5)

Where Fx and Fy are the observer’s accelerations in

x and y respectively, x and y are the observer’s position

in an Earth-centric Cartesian coordinate system, T is

the observer’s orbital period, m is the observer’s mass,

and |r| is the magnitude of the observer’s position. Sim-

ilarly, the torque applied to the observer was defined as

shown in

τ(t) = A cos

(
2tnπ

T

)
(6)
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Where A is the magnitude of the torque, n is the

frequency, and T is the orbital period.

Neglecting process noise w, this results in the linear

system of equations seen below:

Xt =



x0 + |v|xt
|r| + Fxt

2

2m

y0 + |v|yt
|r| +

Fyt
2

2m

ẋ0 + Fxt
m

ẏ0 +
Fyt
m

φ0 + φ̇t+ τt2

2J

φ̇0 + τt
J



(7)

Where A is the magnitude of the torque, n is the fre-

quency, and T is the orbital period, m is the observer’s

mass, |v| is the magnitude of the observer’s orbital ve-

locity, J is its inertia, τ is the torque imparted onto the

observer, and t is the sample time. As simplifications,

mass m and particle inertia J were assumed to be 84

kg and 2.8 kg·m2 respectively. An arbitrary sinusoidal

torque with a magnitude of 5 µN·m was applied to the

observer and time steps of 0.05 s were used. Equation 7

was integrated using both Euler and 4th order Runge-

Kutta methods so that the accuracy and computation

time of both methods could be compared.

After these observer dynamics were integrated, “true”

measurements were taken for each observed object and

time step, using the previously described measurement
equation (Equation 2). Sample measurements were ob-

tained by adding a random normal standard deviation

of 5 arc-seconds to the true measurements, to mimic the

boresight accuracy of a commercially available nanosatel-

lite star tracker [21]. This measurement noise was used

to calculate the measurement noise covariance matrix

R, as follows:

R = In×nv
2 (8)

Where v is the measurement noise standard devi-

ation and In×n is an identify matrix where n is the

number of measurement sources.

Process noise was applied as a random normal dis-

tribution with means equal to 1% of the applied force

(7.4 N) for position-dynamics and 1% of the applied

torque (0.05 µN·m) for attitude-dynamics. Using the

above mentioned process noise, the process noise co-

variance was calculated using the Q evaluation process

as described by Brown and Hwang [22].

An important part of this research is to determine

the extent to which the filter can compute the confi-

dence of a given estimate, expressed through the filter’s

covariance. As such, we have been meticulous about en-

suring that the filter accurately represents the same

(appropriately discretized) measurement and process

noise used to create the truth data. Of course, in a real

filter implementation, while filter designers usually have

good knowledge of the sensor noise, they do not know

the actual process noise and must estimate it based

on an evaluation of unmodeled dynamics. For the pur-

poses of this research, we are exploring how accurately

our UKF tracks the covariance of the estimate when

given perfect filter process and measurement noise co-

variances (R and Q).

3.1 Euler Truncation Error Compensation

As the Euler method is a first-order method, the local

truncation error (LTE) introduced with every time step

can be significant. As demonstrated by Simon [23], Eu-

ler integration can have a percent error of 1.3% for a

time step of 0.05 seconds, compared to 2.2× 10−7% for

a 4th order Runge-Kutta method with the same time

step. Errors of this size can become a non-negligible

source of process noise such as in our case where we

have defined our process noises to be 1% of our control

input.

The filter can compensate for this integration er-

ror by including the LTE into its process noise. As-

suming that the ordinary differential equation y being

integrated has a continuous second derivative and the

initial time is zero, the maximum LTE introduced into

the system at each time-step can be expressed by equa-

tion (9) [25].

LTE = y(∆t)− y1 ≈
∆t2y′′ξ

2
(9)

Where ∆t is the time step used, y′′ is the equation’s

second derivative, and ξ is a constant with an upper

bound of ∆t. Assuming that ξ is at this upper bound,

the maximum LTE for each element of our state func-

tion can be expressed as:
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LTE =
∆t3X ′′t

2
=
∆t3

2



γ|r|+ |v|∆tγ + γ2∆t2|r|

γ|r|+ |v|∆tγ + γ2∆t2|r|

γ2|r|

γ2|r|

A(T 2−2n2π2t2)
JT 2

−4π2n2A∆t
T 2J


(10)

Where X ′′ is the second derivative of the state ma-

trix and γ is:

γ =
4π2

T 2
(11)

4 Simulation Results

To evaluate the performance of the UKF filter, we simu-

lated an observing spacecraft in a 400 km circular orbit

which observed a set of fixed beacons using the mea-

surement equation (equation 2). Since our measurement

equation was non-Gaussian, we set the UKF tuning pa-

rameters κ and β to 2 and 0 respectively, as recom-

mended by Turner and Rasmussen [24]. α was set to

5× 10−4.

All tests were performed using time steps of 0.05

seconds, and the initial state estimates for each filter

were set to zeros. Twelve measurement sources were

used for each test: four fixed beacons at distances of

1012 meters from the centre of the observer’s orbit to

approximate stars, four beacons at distances of 8× 106

meters, and four beacons at distances of 3×107 meters

to approximate RSOs.

Figures 2, 3, and 4 show that the UKF filter was

able to converge on very similar positional estimates

with all three integration methods. The square roots

of the covariances were found by taken the diagonal

elements of the square root of the covariance matrix.

I.E.:

σ = Im×m
√
P (12)

Where σ is the predicted standard deviation, Im×m
is an identity matrix where m is the number of elements

in the state matrix, and P is the state covariance.

Fig. 2 X position error when using a UKF with an uncom-
pensated Euler integration method.

Fig. 3 X position error when using a UKF with an Euler
integration method with local truncation error compensation.

While the results from all three UKF variants con-

verged similarily, the three velocity error plots, pre-

sented in figures 5, 6, and 7, show that adding LTE

compensation reduced the magnitude of error spikes

and resulted in a similar performance to the 4th or-

der Runge-Kutta method. As expected, the 4th order

Runge-Kutta method performed the best of the three

integrators but it’s performance was comparable to the

less-computationally-expensive Euler method when LTE

compensation was added. Note that in all cases, the

moving error standard deviation was bounded by the

covariance.
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Fig. 4 X position error when using a UKF with a 4th order
Runge-Kutta integration method.

Fig. 5 X velocity error when using a UKF with an uncom-
pensated Euler integration method.

5 Discussion

As seen in the simulation results, all three versions of

the UKF were capable of converging onto full state es-

timates within comparable time frames. After an initial

settling period, all three methods reached steady-states

in which their errors and the moving standard devia-

tions of these errors were bounded by their covariance-

based standard deviations. This is to be expected for

a well-functioning filter, as the covariance-bounds form

the filter’s prediction of the estimate uncertainty while

the moving standard deviation is the true uncertainty

within the system. In contrast, the moving standard

deviations were not bounded by the covariance for the

Extended Kalman Filter used in our previous work, as

Fig. 6 X velocity error when using a UKF with an Euler
integration method with local truncation error compensation.

Fig. 7 X velocity error when using a UKF with a 4th order
Runge-Kutta integration method.

seen in figure 14. This filter was unable to converge

without artificially increasing the process noise covari-

ance, as discussed in [14]. This suggests that standard

deviation bounding may be a good metric to evaluate

the reliability of a filter estimate.

A comparison of the Euler and Euler with LTE com-

pensation integrators suggests that adding LTE com-

pensation provides a small but noticeable decrease in

the number and magnitude of error spikes. To explore

this further, we re-ran both filters with a time step of 0.5

seconds. Figures 15 and 16 demonstrate that including

truncation error compensation provides a more notice-

able improvement on the filter’s performance at larger

time steps. However, this improved accuracy is still less
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Fig. 8 Angle error when using a UKF with an uncompen-
sated Euler integration method.

Fig. 9 Angle error when using a UKF with an Euler inte-
gration method with local truncation error compensation.

than that of the 4th order Runge-Kutta method and

was insufficient to prevent the EKF from diverging.

6 Conclusion

This paper has presented improvements towards devel-

oping an RSO-based optical navigation technique for

determining a satellite’s position and attitude using

RSO observations. The Unscented Kalman Filter devel-

oped here is an improvement on previous work for RSO-

based optical navigation as the resulting state estimates

remain bounded both by the moving standard devia-

tion of its error and the square root of its covariance.

The 'true'error standard deviation, calculated using the

Fig. 10 Angle error when using a UKF with a 4th order
Runge-Kutta integration method.

Fig. 11 Angular velocity error when using a UKF with an
uncompensated Euler integration method.

moving standard deviation, is less than the square root

of the covariance for all cases and state elements and is

a strong indicator that the resulting measurements can

be reliably trusted.

In developing this work, several integrators were ex-

amined and an improvement was made for applying the

Euler method to state estimation by adding the local

truncation error (LTE) to the system’s process noise.

This addition provides a small but noticeable decrease

in the number and magnitude of error spikes in the

resulting state estimates and allows the method to per-

form better at larger time steps than the standard Euler

method.
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Fig. 12 Angular velocity error when using a UKF with an
Euler integration method with local truncation error compen-
sation.

Fig. 13 Angular velocity error when using a UKF with a 4th

order Runge-Kutta integration method.
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