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Abstract The detumbling of a non-cooperative tumbling target by a space robot is a chal-
lenging endeavour. Previous studies have formulated detumbling strategies by making either
or both of the following assumptions: (1) the availability of force/torque measurements; (2)
accurate knowledge of the target’s inertial parameters (mass, inertia tensor, location of center
of mass). In reality, the target’s inertial parameters are uncertain and force/torque measure-
ments are difficult to obtain due to the harsh environment of space. This study presents a
robust adaptive detumbling controller to detumble a non-cooperative target with unknown
inertial parameters that lie within known bounds, without the need of force/torque measure-
ments. Furthermore, the proposed detumbling strategy takes into account magnitude limits
on the control inputs of the space robot that consists of a manipulator and a satellite. A
hyperbolic tangent function is employed to model the magnitude constraints of the space
robot’s control input, which results in a system that is non-affine in its control inputs. An
augmented model of the space robot is formulated to allow the development of the detum-
bling controller. Using bounds on the target’s inertial parameters, robust adaptive control
approach is utilized to design the detumbling controller with the backstepping technique
to ensure successful detumbling of the unknown target attached to the end-effector and
rejection of its momentum. The performance of the proposed robust adaptive detumbling
controller is examined through numerical simulations, and its effectiveness in detumbling a
non-cooperative target with unknown inertial parameters is demonstrated.

Keywords Space robotic manipulator · Non-cooperative target · Robust control

1 Introduction

The capture and servicing of a malfunctioning satellite, denoted as the target, is a chal-
lenging problem as it is common for the target to be non-cooperative, tumbling and for its
inertial parameters (mass, inertia tensor and location of center of mass) to be uncertain [4].
The research community has proposed the use of a robotic manipulator attached to a satellite
base to capture and the target and is denoted as the servicer. The capture process is typically
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segmented into pre-grasping, contact and post-grasping phases. In the pre-grasping and cap-
ture phase, the servicer is concerned with rendezvousing with the target’s grasping surface
and physically grasping the target [3, 4]. After the target is rigidly grasped by the servicer’s
end-effector in the contact phase, the post-grasping phase is concerned with bringing the
target’s tumbling motion to rest subjected to interaction force/torque limits at the grasping
point [3, 4].

The authors of [2, 3, 5, 17] have achieved detumbling of the target in the post-grasping
phase by assuming that the target’s inertial parameters are accurately known. Under this as-
sumption, coordination of the servicer’s end-effector and base to track a desired detumbling
trajectory and reject the target’s momentum with the target attached to the end-effector is
accomplished. However, it is unrealistic to assume that the target’s inertial parameters can
be accurately known prior to the post-grasping phase (e.g., no practical way to measure
remaining propellant in a malfunctioning satellite).

To address uncertainty in the target’s inertial parameters, [18] and [13] have delineated
desired detumbling trajectories without requiring accurate knowledge of the target’s inertial
parameters. However, in [13], there is no consideration of the target’s parameter uncertainty
in the servicer’s controller design to track the desired detumbling trajectory and to accom-
modate the target’s momentum. In [18] and [1], with the use of force/torque measurements
at the end-effector, impedance control is utilized to track the desired detumbling trajectory
with an uncertain target attached to the end-effector. The requirement of force/torque mea-
surements in [18] and [1] is difficult to satisfy in space due to the operational issues that
arise in the space environment [11]. In [22], an adaptive sliding mode controller is presented
to track a desired detumbling trajectory with an uncertain target attached to its end-effector.
The authors achieve robustness to target parameter uncertainty without the need of end-
effector’s force/torque measurements.

The above-mentioned detumbling strategies achieve detumbling of the target by track-
ing a desired detumbling trajectory. However, they do so without consideration of limits of
the servicer’s control inputs and in some cases requires force/torque measurements at the
servicer’s end-effector. In practical application, the servicer will be subjected to limits on its
control input because of physical limits of the onboard actuators. A tracking controller to
track a desired detumbling trajectory must consider these limits in the controller’s design as
they may lead to instability or poor performance if not considered. This study takes into ac-
count magnitude limits on the servicer’s control inputs by modelling them with a hyperbolic
tangent function, which results in a system that is non-affine in its control inputs. An aug-
ment model of the servicer is introduced, and with the use of the backstepping technique and
bounds on the target’s inertial parameters, a controller to track a desired detumbling trajec-
tory subjected to control input magnitude constraints is presented. The resultant detumbling
controller does not require force/torque measurements at the servicer’s end-effector.

The remainder of the paper is organized as follows. Section 2 presents the scenario
and assumptions along with dynamics and kinematics of the servicer and target. Section 3
presents the development of the robust trajectory tracking controller. Section 4 presents nu-
merical simulations results of the proposed robust trajectory tracking controller. Concluding
remarks are given in Section 5.

2 Problem Formulation

The following assumptions are utilized in developing the proposed detumbling controller:
(1) measurements of the servicer’s base linear and angular velocities are available; (2) the
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target is rigidly attached to the end-effector after grasping (firmly grasped); and (3) the
relative linear velocity between the center of mass of the servicer and target prior to capture
is zero.

The first assumption implies that measurements of the servicer system are available from
the inertial frame. This can be made possible if there exists an inertial observer such as a
camera on an external space structure as proposed by [14], or a second satellite in formation
with the servicer. To realize the last assumption, vehicular operations of the servicer satellite
are assumed to have been utilized to guide the servicer to a pose where the relative velocity
of the servicer and target are near zero and the servicer’s manipulator can reach out and
capture the target. Under these conditions, the combined servicer-target system after capture
will have zero linear momentum relative to the inertial observer as the problem of absorbing
and dissipating the gained linear momentum by the servicer with the use of external jet
thruster is not addressed. These assumptions are common in the literature on detumbling of
a non-cooperative target [6, 12, 13, 21].

As a result of the above stated assumptions, the following Corollary can be stated:

Corollary 1 The servicer is composed of multiple rigid bodies that are physically con-
strained to each other via revolute joints and the target is rigidly attached to the servicer’s
end-effector (Assumption 2), i.e., the maximum distance between the end-effector and the
center of mass of any rigid body of the servicer/target system is geometrically constrained.
From Assumption 3, it follows that the end-effector’s position is also bounded from an iner-
tial frame of reference located at the center of mass of the combined servicer/target system.

2.1 Notations

The following notations are used: a right upper superscript d as in (·)d, denotes the desired
value of (·); En ∈ Rn×n is an identity matrix; λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues of symmetric matrix (·), respectively; for the vector x∈R3, the skew-
symmetric matrix is denoted as x× such that x×a = x×a for any a ∈ R3.

2.2 Servicer-Target Dynamics

The space robot consists of a base body and m-link serial manipulator arm. Let vb =
[vT

b ,w
T
b ]

T ∈ R6 and ve = [vT
e ,wT

e ]
T ∈ R6 represent the linear and angular velocity of the ser-

vicer’s base center of mass and the end-effector’s linear and angular velocity, respectively.
Making use of the expression for linear and angular momentum of the servicer and the kine-
matic relationship between the servicer’s end-effector, base and manipulator velocities, one
can arrive at the following equation of motion for the servicer as in [7, 8]:

Msξ̇ + cs = AT
τ +Js(−fe) (1)

where ξ = [vT
e ,wT

b ]
T. The matrices Ms ∈ R(6+3)×(6+3), cs ∈ R(6+3), Js ∈ R(6+3)×6 and A ∈

R(m+3)×(6+3) are defined in [8]. fe = [FT
e ,τ

T
e ]

T ∈ R6 represents the force/torque at the end-
effector where Fe ∈ R3 denotes the force and τe ∈ R3 denotes the torque. τ = [τT

m,τ
T
b ]

T,
where τm ∈ Rm denotes the manipulator’s joint torques and τb is the control torque to be
applied by the servicer’s base attitude control system.
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The target is modelled as a single rigid body where vt = [vT
t ,wT

t ]
T ∈ R6 represents the

target’s center of mass linear and angular velocity. The equation of motion of the target is
given by:

Mtv̇t + ct = JT
t (fe) (2)

where Mt ∈ R6×6, ct ∈ R6 and Jt ∈ R6×6 are defined as:

Mt =

[
mtE3 0

0 It

]
ct =

[
0

wt× Itwt

]
Jt =

[
E3 −r×te
0 E3

]
(3)

where mt and It ∈ R3×3 are the mass and inertia tensor of the target, respectively. rte ∈ R3

is the radial vector from the target’s center of mass to the grasping point.
The velocity of the end-effector and target are subjected to the following kinematic con-

straints as a result of grasping: ve = Jtvt and v̇e = Jtv̇t+ J̇tvt. Making use of these constraints
in (2), the target’s dynamics can be expressed as:

Λ tv̇e−Λ tJ̇tJ−1
t ve +J−T

t ct = fe (4)

where Λ t = J−T
t MtJ−1

t represents the target’s inertia projected onto the end-effector. The
equation of motion of the combined servicer and target system is obtained by substituting
(4) into (1), resulting in the following:

M̄ξ̇ + c = AT
τ (5)

where M̄ = Ms+[JsΛ t 0] and c = cs+Js(J−T
t ct−Λ tJ̇tJ−1

t ve). Equation (5) will be used for
control purposes.

3 Robust Trajectory Tracking Controller

This section presents the servicer’s controller development to simultaneously track a de-
sired end-effector detumbling trajectory and to regulate the servicer’s base attitude with an
unknown target attached to the end-effector. The controller’s development does not require
force/torque measurements at the end-effector and takes into account magnitude constraints
on the servicer’s control inputs. To achieve this the position and orientation error of the end-
effector and base attitude, along with the end-effector and base velocity errors are defined
as follows:

eP =

xe−xd
e

(δqv)e
(δqv)b

=

 epe
(δqv)e
(δqv)b

 eV =

 ve−vd
e

we−wd
e

wb−wd
b

=

eve
ewe
ewb

 (6)

where (δqv)(·) denote the vector component of the quaternion associated with the attitude
tracking error of the end-effector, (·) = e, and base, (·) = b. δqv = qsqd

v +qv×qd
v−qvqd

s ∈
R3 where the scalar and vector components of the quaternion are denoted by (·)s and (·)v,
respectively, and (·)d represents the desired quaternion value. Making use of (6), a sliding
variable, s1 ∈ R9, is defined as:

s1 = eV +KPeP (7)

where KP = diag[KPEL,KPEAE3,KPBAE3] and 0 < KPEL ∈ R3×3, KPEA ∈ R and KPBA ∈ R
are positive gains. Let s1 = [sT

1pe,s
T
1we,s

T
1wb]

T where s1pe ∈ R3, s1we ∈ R3 and s1wb ∈ R3. It
follows from (6) and (7) that:

s1pe = eve +KPELepe; s1we = ewe +KPEA(δqv)e; s1wb = ewb +KPBA(δqv)b (8)
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Boundedness of s1 will result in eV and eP also being ultimately bounded. For the first
system in (8), this follows since it represents an exponentially stable system that is disturbed
by an ultimately bounded input in s1pe. Similarly, boundedness of ew(·) and (δqv)(·) for a
bounded s1w(·) in the second and third systems described in (8) where (·) = e and (·) = b,
respectively, follows from Lemma 1 in [16].

The controller design takes into account magnitude constraints on the servicer’s control
inputs by modelling the servicer’s control inputs, τ in (5), by a smooth hyperbolic tangent
function [23]:

τ = f (V); { f (V)}i = {UM}itanh({V}i/{UM}i) (9a)

V̇ = f̄−1U (9b)

where i = 1,2,3, ...,(m+ 3) and the ith element of UM ∈ R(m+3) denotes the control input
magnitude limit of the ith servicer’s actuator. f̄ = ∂ f/∂V, V ∈ Rm+3 and U ∈ Rm+3. From
the above model of the servicer’s control input, it can be concluded that servicer’s control
input will always satisfies its magnitude constraint: {τ}i ≤ {UM}i for i = 1,2,3, ...,(m+3).
All functions of the resultant system comprising of (5) and (9) are smooth, and hence, the
use of the backstepping technique is feasible to design the auxiliary signal U. The use of the
hyperbolic tangent function to model the servicer’s control inputs is an alternative to the use
of a discontinuous auxiliary system designed to account for control input magnitude limits
as in [10]. The latter adds additional complexity in the tuning of the auxiliary system and
analysis of the resultant controller, while the former results in a simpler control design and
analysis of the resultant controller with the use of the backstepping technique. The design
of U is described in the following steps:
Step 1: Design of the virtual controller for f (V). The dynamic equation for s1 is obtain using
(7) and (5):

M̄oṡ1 = AT f (V)− co−∆c−M̄oξ̇
d−∆M̄ξ̇ +M̄oKPėp (10)

where M̄o = Ms and co = cs denote the nominal component of the servicer/target mass
matrix and nominal component of the servicer’s nonlinear velocity dependent terms, re-
spectively. ∆M̄ = [JsΛ t 0] ∈ R(6+3)×(6+3) and ∆c = Js(J−T

t ct −Λ tJ̇tJ−1
t ve) so that M̄ =

M̄o +∆M̄ and c = co +∆c.
Utilizing the definition of Λ t, Jt and ct in Section 2.2, the evaluation of ∆c is as follows:

∆c = Js(J−T
t ct−Λ tJ̇tJ−1

t ve)

= Js

[
mtṙ×tewt

wt× Itwt−mtr×te ṙ×tewt

]
= Js(γ1 + γ2)

(11)

where with the use of wt = we = ewe +wd
e in (11), γ1 and γ2 are defined as follows:

γ1 =

[
mtwd×

t r×tewd
t

wd
t × Itwd

t −mtr×tewd×
t r×tewd

t

]
γ2 =

[
mtγ2a

γ2b +mtr×teγ2a

]
(12)

where γ2a = e×wer×teewe +2e×wer×tewd
e and γ2b = ewe× Itewe + ewe× Itwd

e +wd
e× Itewe.

The target’s inertial parameters are upper bounded as follows: mt ≤ mtU, λmin(It) ≤
‖It‖ ≤ λmax(It) and ‖rte‖ ≤ rteU. Using bounds on the target’s inertial parameters and
Lemma 1 in [23] results in the following bounds on the components of γ1 in (12)
as: ‖mtwd×

t r×tewd
t ‖ ≤ mtUrteU‖wd

e‖2, ‖wd
t × Itwd

t ‖ ≤ (λ 2
max(It) − λ 2

min(It))
1/2‖wd

e‖2 and
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‖mtr×tewd×
t r×tewd

t ‖≤mtUr2
teU‖wd

e‖2. Making use of these bounds the magnitude of γ1 is upper
bounded as:

‖γ1‖ ≤ h‖wd
e‖2 (13)

where h = [(mtUrteU)
2 +([λ 2

max(It)−λ 2
min(It)]

1/2 +mtUr2
teU)

2]1/2. Furthermore, with the use
of (13), Jsγ1 can be upper bounded as follows:

‖Jsγ1‖ ≤ h‖Js‖‖wd
e‖2 ≤ θ . (14)

where θ is known positive constant since h can be computed utilizing bounds on the target’s
inertial parameters, Js is a function of known servicer’s inertial and geometric parameters
[7, 8], and wd

e can be designed to be bounded as per the design of the desired detumbling
trajectory.

To design the virtual controller for f (V), we utilize the following Lyapunov function
candidate from [23] which is radially unbounded and globally positive-definite function:

V1 = ∑
9
i=1 ln(cosh({s1}i)) (15)

Taking the time derivative of (15) and making use of (10) and (11), results in the follow-
ing expression for V̇1:

V̇1 = tanhT(s1)M̄
−1
o (AT f (V)− co−Js(γ1 + γ2)−M̄0ξ̇

d−∆M̄ξ̇ +M̄oKPėp) (16)

where tanh(x) = [tanh(x1), tanh(x2), ..., tanh(xn)]
T for any vector x ∈ Rn

Considering f (V) as a virtual controller, the following virtual controller is proposed:

f (V)d = A−T(co +M̄oξ̇
d−M̄oKPėP−M̄oK1tanh(s1)−ψ1) (17)

with K1 as a positive constant and ψ1 ∈ R9 is a robust compensator defined as in [9]:

ψ1i = θ tanh
(

9kuθ{M̄−1
o tanh(s1)}i
ε1

)
for i = 1,2,3, ...,9 (18)

where ku = 0.2785 [15] and ε1 is a small positive scalar. The hyperbolic tangent function
has the following property [15]:

0≤ |x|− xtanh
(
x/εu

)
≤ kuεu (19)

for any εu > 0 and any x ∈ R. Making use of this property, the following
bound is obtained: ‖tanhT(s1)M̄

−1
o ‖θ − tanhT(s1)M̄

−1
o ψ1 ≤ ∑

9
1
(
|{tanhT(s1)M̄

−1
o }i|θ −

{tanhT(s1)M̄
−1
o }i{ψ1}i

)
≤ ε1. Using this bound and (17) in (16), results in:

V̇1 = tanhT(s1)M̄
−1
o (ATs2 +AT f (V)d− co−Js(γ1 + γ2)−M̄oξ̇ +M̄oKPėP−∆M̄ξ̇ )

≤−K1‖tanh(s1)‖2 + ε1 + tanhT(s1)χ

(20)

where s2 = f (V)− f (V)d and χ = M̄−1
o (ATs2−Jsγ2−∆M̄ξ̇ ).

Step 2: Design the control law for the input U to the auxiliary system, (9b). Using (9), the
dynamic equation for s2 is obtained as follows:

ṡ2 = ḟ (V)− ḟ (V)d = U− ḟ (V)d (21)
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The input U to the auxiliary system (9b), is designed to robustly compensate for ḟ (V)d.
To achieve this, we construct the following compact sets:

Ω 1 =
{
‖xd

e‖ ≤ C1,‖ξ d‖ ≤ C2,‖ξ̇
d‖ ≤ C3,‖ξ̈

d‖ ≤ C4
}

(22a)

Ω 2 =
{
(s1,s2)

∣∣ ∑
9
i=1 ln(cosh({s1}i))+∑

m+3
i=1 ln(cosh({s2}i))≤ C5

}
(22b)

where Ci=1,2,3,4,5 are positive constants. The desired detumbling trajectory is determined by
the controller designer such that the selection C1 to C4 can be made to satisfy (22a). The
choice of C5 is free but will affect the controller’s gain selection as discussed at the end
of this Section. Furthermore, provided that s1 and s2 are contained in the compact set Ω 2,
with the use of Corollary 1, it follows that χ and ḟ (V)d are bounded, such that ‖χ‖ ≤M1
and ‖ ḟ (V)d‖ ≤M2 where Mi=1,2 are positive constants. From this, the control law for U is
proposed as:

U =−K2tanh(s2)−ψ2 (23)

where K2 is a positive constant and ψ2 is a robust compensator that is defined as [9]:

ψ2i = M̂2tanh
( (m+3)kuM̂2{tanh(s2)}i

ε1

)
for i = 1,2,3, ...,(m+3) (24)

The variable M̂2 is an estimate of M2 and is updated by the following update law [23]:

˙̂M2 = σ1‖tanh(s2)‖−σ1σ2M̂2 (25)

Uniform ultimate boundedness of s1, s2 and M̃2 = M2− M̂2 can be concluded with the
use of the following Lyapunov function candidate:

V = V1 +∑
m+3
i=1 ln(cosh({s2}i))+

1
2σ1

M̃2
2 (26)

The time derivative of (26) along with (20), (21) and (23-25) results in the following:

V̇≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 + ε1 + tanhT(s1)χ + tanhT(s2)(− ḟ (V)d−ψ2)

− (1/σ1)M̃2
˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 + ε1 +M1− tanhT(s2)ψ2 +‖tanhT(s2)‖(M2− M̂2)

+‖tanhT(s2)‖M̂2− (1/σ1)M̃2
˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 +2ε1 +M1 +‖tanhT(s2)‖(M2− M̂2)− (1/σ1)M̃2
˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2− (σ2/2)M̃2
2 + ε̄

(27)

where the following inequalities were utilized in (27): M̂2‖tanh(s2)‖− tanhT(s2)ψ2 ≤ ε1,
σ2M̃2M̂2 ≤−σ2

2 M̃2
2 +

σ2
2 M2

2, and ε̄ = 2ε1 +M1 +
σ2
2 M2

2.
From (27), V̇ can be expressed as:

V̇≤−ρV̄+ ε̄; V̄ = ‖tanh(s1)‖2 +‖tanh(s2)‖2 + M̃2
2 (28)

where ρ = min{K1,K2,σ2/2}. Thus, V̇ is strictly negative outside the following compact
set: Ω 3 =

{
V̄
∣∣ V̄ ≤ ε̄/ρ

}
. From this, we can conclude that s1, s2 and M̃2 are uniformly

ultimately bounded provided that V(0) ≤ C5 and the controller gains, K1, K2 and σ2 be
chosen such that ρ > ε̄/p̄, where p̄ = minV=C5 V̄. The size of set Ω 3 is determined by the
gains K1, K2, ε1 and σ2, and reflects the final bound on s1, s2 and M̃2. A smaller bound
requires higher selection of the gains K1, K2 and σ2 with a lower ε1.
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Table 1 7-DOF Model Parameters

Mass(kg) Ixx(kgm2) Iyy(kgm2) Izz(kgm2)

Base 1000 1200 1200 1200
Link 1 35.01 1.218 0.5132 1.331
Link 2 30 2.10 1.378 2.359
Link 3 22.69 0.102 3.378 3.359
Link 4 21.38 0.4327 2.266 1.911
Link 5 16.75 0.3878 0.3963 0.07271
Link 6 26.17 0.5727 0.5987 0.1288
Link 7 18.07 0.165 0.241 0.135

4 Numerical Simulation Study

This section presents the evaluation of the proposed robust controller to track a desired de-
tumbling trajectory in order to detumble a non-cooperative target with uncertain but bounded
inertial parameters. The evaluation is carried out using a 7-degree-of-freedom (DOF) space
manipulator servicer satellite that is based on a modified model of ETS-VII system (model
parameters are presented in Table 1 and Denavit-Hartenberg parameters found in [12]). The
target is a cube with 0.5m sides where mt = 40kg and It = diag([16,25,25])kgm2.

The target is grasped at t = 0s, resulting in a redistribution of its momentum in the
servicer-target system. The velocities of the servicer-target system after grasping (t+ = 0s)
are computed as in [19]. The target has an initial angular velocity of wt = [4, 4, 5.7]Tdeg/s at
the start of the post grasping phase. Furthermore, functions from the SpaceDyn toolbox [20]
were utilized to compute the servicer’s mass matrix, Jacobian and nonlinear forces.

The desired end-effector’s linear and angular velocity are described by: vd
e =(1+(e−τn−

0.5e−1τ2
n +2e−1τn−1)/(1−2.5e−1))ve(int), where ve(int) denotes the end-effector’s velocity

at the start of the post-grasping phase and τn ∈ [0,1] denotes normalized time where τ̇n =
0.3. From this, the desired end-effector position and orientation and acceleration can be
determined. Regulating the servicer’s base attitude is not required in detumbling the target
and the servicer’s base desired angular velocity is set to zero.

Tracking the reference detumbling trajectory while robustly compensating for the un-
known target is accomplished by applying the control input U in (23) to the augmented
model for the servicer’s input defined in (9b) in order to determine the variable V. V is then
utilized to compute the servicer’s actuator torques, τ = f (V), where f (V) is defined in (9a).
The following controller gains are utilized: KPEL = 0.2E3, KPEA = 0.1, KPBA = 0, K1 = 4,
K2 = 2, ε1 = 1, σ1 = 10, σ2 = 1, {UM}i = 2.5Nm for i = 1,2,3, ...m (manipulator) and
{UM}i = 1.5Nm for i = (m+ 1), ...(m+ 3) (base attitude control). Bounds on the target’s
inertial parameters are as follows: rteU =

√
0.1875m, mtU = 44kg, λmax(It) = 28kgm2 and

λmin(It) = 14.5kgm2. Furthermore, joint null space damping is utilized to minimize excess
manipulator joint motion in the null space of the detumbling task.

The end-effector position and orientation errors are presented in the left plots in Fig. 1.
The end-effector linear and angular velocity tracking error as well as the base angular veloc-
ity error are presented in the right plots in Fig. 1. As observed from these plots, the tracking
errors converge to a neighbourhood of zero and remained there even as the servicer’s base
attitude control input were saturated (Fig. 2).
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Fig. 1 Left plots: End-effector’s position and orientation error. Right plots: End-effector’s linear and angular
velocity error and base angular velocity error.

Fig. 2 Servicer’s manipulator joint torque profile (left plot) and servicer’s base attitude control torques (right
plot). {UM}i = 2.5Nm for i = 1,2,3, ...m (manipulator, τm) and {UM}i = 1.5Nm for i = (m+1), ...(m+3)
(base attitude control, τb)

5 Conclusion

This study presents a robust adaptive detumbling controller to detumble a non-cooperative
target with unknown but bounded inertial parameters. The robust adaptive detumbling con-
troller achieves detumbling of the target by tracking a desired detumbling trajectory while
taking into account magnitude constraints on the servicer’s control inputs. This is achieved
by modelling the magnitude constraints on the servicer’s control inputs with the use of the
hyperbolic tangent function, which results in a system that is non-affine in its control inputs.
Using an augmented model, bounds on the target’s inertial parameters and robust adaptive
control approach, the detumbling controller is designed with the use of the backsetepping
technique. The performance of the proposed robust controller is examined through numeri-
cal simulations where it is demonstrated that detumbling of the target is accomplished even
as the servcier’s control input became saturated.
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