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Abstract—Remaining useful life (RUL) estimation is very important for the maintenance of 

aircraft engines. We can evaluate the current condition of an aircraft engine and predict its RUL by 

constructing its degradation curve. However, the degradation curve is often difficult to obtain due 

to the unobserved degradation patterns. Currently many researchers estimated RUL by setting a 

fixed RUL target function or making assumptions about how an engine degrades. But in the real 

world, degradation models of aircraft engines are generally individualized. To obtain personalized 
degradation curves and predict RUL accurately, we propose a method based on autoencoder and 

similarity measurement. First, an autoencoder trained with normal data is adopted to extract 

degradation curves of aircraft engines and build a degradation model template library. Then, we 

measure each test object with all template curves to get similarities and corresponding RULs based 

on a sliding window and complexity-invariant distance. At last, the estimated RUL can be 

obtained by calculating the weighted average of highly relevant corresponding RULs. We conduct 

the proposed method on the aircraft engine dataset provided by NASA. The experimental results 

demonstrate that our method can utilize the information of multi-sensor data to generate 

personalized degradation curves effectively and estimate RUL more accurately. 

Keywords—Aircraft Engine, Remaining Useful Life, Autoencoder, Degradation 

Curve, Similarity Measurement 

1 Introduction 

Remaining useful life (RUL) estimation is an important part of Prognostics 

and Health Management. With the fast development of industry and 

manufacturing, sensors are widely used to collect running data from complex 

systems, which are very beneficial to evaluate their states and estimate their 

RULs. This promotes the popularity of condition-based maintenance rather than 

time-based maintenance, for it can not only ensure the safety of equipment but 

also lead to significant financial savings. Such goal can be reached by predicting 

the RUL of target object based on establishing its degradation model with 

collected multi-sensor data. 

RUL estimation methods mainly consist of model-based methods, data-

driven methods and experience-based methods [1]. Model-based methods 

evaluate the system state by building physical model. A physics-based model for 

bearing prognostics is proposed in [2], by which we can get spall growth 

trajectory and calculate time to failure according to operating conditions, and then 
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reduce prediction uncertainty based on self-adjusting. Data-driven methods 

usually learn degradation model by running data to estimate RUL, where Hidden 

Markov Model [3], Gaussian process regression [4] and neural networks [5] are 

frequently used. Experience-based approaches predict the system RUL based on 

historical failure cases, building hidden relationship among current system states, 

current lives and recorded failure models. In [6], RUL is obtained by evaluating 

the instance similarity, which is related to the usage and maintenance history. 

Since the difficulty in modeling assumptions and capturing features that directly 

reflect system change, model-based methods are limited, while due to the 

available of large amount of running data, data-driven methods and experience-

based methods have been greatly developed. 

In the past few years, artificial neural network (ANN) has become 

noticeable. Many researchers tend to estimate RUL based on ANN such as 

convolutional neural network (CNN), long short-term memory (LSTM) [7] and 

recurrent neural network (RNN). Most of them predict RUL by setting a fixed 

RUL target function or making assumptions about how an engine degrades. The 

piece-wise model is commonly employed [8, 9, 10], in which a set of instances 

are assumed to begin with the same RUL and then start linear degradation after a 

certain cycle. In [8], a piece-wise RUL target function is adopted to obtain 

assumed trajectory of RUL, and then LSTM model is obtained by the training data 

to find optimal parameters. A RUL estimation method based on CNN is applied in 

[10]. This method first sets a piece-wise linear RUL target function to get target 

RUL, then CNN is applied on sensor data split by a sliding window.  

However, these fixed RUL target functions or degradation models are 

always too restricted and unreasonable for complex systems. The reasons are as 

follows: 1) The lifetime of each engine is different. 2) Each engine begins to work 

with unknown wear which is basically different from each other. 3) With diverse 

operating conditions and faults, degradation curves do not follow a fixed shape. 4) 

The accuracy of RUL estimation is greatly affected by the selection of 

degradation point. 

Thus, this paper uses the autoencoder to obtain individualized degradation 

mode of each engine. We first transform reconstruction errors to state variations 

of the complex system by autoencoder, then filter them to get degradation curves. 

Furthermore, with many degradation curves of run-to-failure systems, we can set 

up a degradation model template library to match degradation models of test 

engines. To get RUL, we compute the similarities and corresponding RULs 

between test engine and all instances in the library by a sliding window, based on 

the main idea of case-based learning [11]. Our experiment is conducted on public 

C-MAPSS dataset provided by NASA and the result shows that our method can 

improve the accuracy of RUL estimation in comparison with other fixed-RUL 

methods. 

The contribution of this paper can be summarized as follows: 
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•Extract the personalized degradation curve by autoencoder with recorded 

multi-sensor data. 

•Analyze the characteristics of degradation curve and propose an effective 

framework to calculate RUL based on similarity measurement without any 

degradation assumptions. 

The rest of the paper is organized as follows. Section 2 introduces the 

related work, including time series anomaly detection based on autoencoder and 

complexity-invariant distance [12]. Section 3 presents our method, describing 

how to extract degradation curve and measure similarity between test curve and 

model curves. Section 4 shows the experimental results on C-MAPSS dataset. The 

last section summaries the paper and discusses the future work. 

2 Related Work 

2.1 Time Series Anomaly Detection 

Autoencoder is proposed for the process of high dimensional data [13], 

which is widely used in the field of data compression, representative learning and 

signal denoising. The main idea of autoencoder is to reconstruct original data by 

some sparse high-level features or in other words to learn an equation to make 

output same as input. The structure of autoencoder is shown in Fig.1. It consists of 

an encoder and a decoder. The encoder maps original high-dimensional data to a 

hidden low-dimensional vector while the decoder aims to convert this vector to a 

same series as input. For 𝑁 -dimensional data 𝑥 = {𝑥𝑖|𝑖 = 1,2, … 𝑁} , the 

reconstruction error can be obtained by (1): 

 e = ∑ ‖𝑥𝑖 − 𝑔 (𝑓(𝑥𝑖))‖𝑁
𝑖=1    (1) 

where 𝑔𝜃() is the decoder function, 𝑓𝜃() is the encoder function. 

 
Fig. 1. The structure of autoencoder 

 Autoencoder based approaches for time series anomaly detection have 

been proposed in [14,15]. Due to the unrecorded factors or variables, it is difficult 

to detect anomalies by mathematical models or prediction models. So researchers 

adopt autoencoder-based architecture to reconstruct normal data behavior and 

denote anomaly as large reconstruction error, for the autoencoder only knows the 

representation of normal data. 
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2.2 Complexity-invariant Distance 

For case-based learning, the method of similarity measurement or in other 

words the way to calculate distance between cases is particularly important. 

Common distance calculation methods include Euclidean Distance and Dynamic 

Time Warping (DTW), but they are not very applicable to current situation. 

Euclidean Distance is often effective but it tends to assign a complex object to a 

simpler class [12]. DTW is usually used to compare two sequences of different 

lengths, in which one series may be warped by stretching or shrinking its time 

axis [16]. To evaluate the similarity between target curve and model curve, here 

complexity-invariant distance (CID) is adopted. CID improves the accuracy of 

classification and clustering by taking complexity differences between two 

sequences into consideration [12]. For physical intuition, the complexity of a 

sequence can be defined by its length, since complex series is always longer than 

a simpler series after stretched. On the basis of Euclidean Distance, CID just adds 

a correction factor compared with it. Assume that 𝑄 and 𝐶 are two series with 

𝑛 steps, then main calculation formulas of CID can be listed as follows:  

   CID(Q, C) = ED(Q, C) × 𝐶𝐹(𝑄, 𝐶)   (2) 

   𝐶𝐹(𝑄, 𝐶) =  
max (𝐶𝐸(𝑄),   𝐶𝐸(𝐶))

min (𝐶𝐸(𝑄),   𝐶𝐸(𝐶))
    (3) 

   𝐶𝐸(𝑄) = √∑ (𝑞𝑖 − 𝑞𝑖+1)2𝑛−1
𝑖=1     (4) 

where CID(Q, C) calculates the CID between 𝑄 and 𝐶, complexity correction 

factor of 𝑄 and 𝐶 is defined as 𝐶𝐹(𝑄, 𝐶), 𝐶𝐸(𝑄) represents the complexity 

estimation of time series 𝑄. 

3 Method 

3.1 Degradation Curve Extraction 

Since autoencoder can fuse high-dimensional data and reconstruct them 

effectively by representative learning, we utilize an autoencoder trained with 

normal data to extract degradation curve, so that it can reconstruct normal cycles 

with small errors while high error is generated at the occurrence of anomalous 

subsequence. Because each engine start running normally and some faults occur at 

an unknown point during operating, we take the sensor data collected from several 

initial cycles as normal data. Assume that matrix 𝑋𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 } represents 

all recorded multi-sensor data of engine 𝑖  with 𝑛  running cycles. Then 

autoencoder is trained with initial data 𝑥1
𝑖 ~𝑥𝑚

𝑖  to minimize the loss, and 

reconstruct 𝑋𝑖  to get reconstruction error e𝑖 = {𝑒1
𝑖 , 𝑒2

𝑖 , … 𝑒𝑛
𝑖 } , which can be 

considered as the deviation from normal state. Since test engines are not run-to-

failure, normalization to 0-1 on e𝑖 will change the relative shape between test 

curve and model curve. So here we just filter it to get health indicator 𝐻𝐼𝑖 =

{ℎ1
𝑖 , ℎ2

𝑖 , … , ℎ𝑛
𝑖 } as well as degradation curve, where 0 represents normal and 
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increase in amplitude means degradation in state. After extracting all run-to-

failure degradation curves of engines in training subsets, a template library will be 

established.  

3.2 Similarity Measurement 

According to the main idea of case-based learning, we need to calculate 

the CID between two series to get the similarity of them. A sliding window of the 

same length as test series is used to calculate CID between test series and all 

segments of each degradation curve, with a step length of 1. Then the similarity 

sim(𝑄𝑖 , 𝐶𝑗) between test engine 𝑖 and model engine 𝑗 can be obtained by (5). 

sim(𝑄𝑖 , 𝐶𝑗) = 𝑚𝑎𝑥 {
1

𝐶𝐼𝐷(𝑄𝑖,𝐶1
𝑗

)
,

1

𝐶𝐼𝐷(𝑄𝑖,𝐶2
𝑗

)
, … ,

1

𝐶𝐼𝐷(𝑄𝑖Q,𝐶𝑛
𝑗

)
}  (5) 

where 𝐶𝑘
𝑗
, 𝑘 = 1, 2, … , 𝑛 are segments of the same length as 𝑄𝑖 , split from 

model curve 𝐶𝑗. 

3.3 The Proposed Architecture 

The flowchart of our method is shown in Fig. 2. First, we preprocess the 

original multi-sensor data to satisfy the latter experiment requirements. Second, 

we use an autoencoder trained with normal data to obtain the state variations of 

engines as degradation curves which are same as their HIs, and build a 

degradation model template library. Then we measure each test object with all 

degradation curves in template library to get similarities and corresponding RULs 

based on CID. At last we can get the estimated RUL by calculating the weighted 

average of highly relevant corresponding RULs. 

 
Fig. 2. The flowchart of our method. 

4 Experiments 

4.1 C-MAPSS Turbofan Engine Dataset and Performance Evaluation 

Commercial Modular Aero-Propulsion System Simulation is a tool for 

simulating a realistic turbofan engine and Saxena et al. [17] modeled a series of 

turbofan engines as well as recorded their run-to-failure data as C-MAPSS 

dataset. As shown in Table I, the dataset contains four subsets covering different 

operating conditions and fault modes, and then they are further divided into 

training and test subsets. Each engine operates normally at the beginning with 

unknown different initial wear, and then develops faults at some different points 
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during running. The faults keep growing until system fails. Engines in training 

subset fail at the last cycle while in test subset recording data end at some cycle 

which is prior to final failure. Each subset includes 26 columns, containing engine 

id, running time (in cycles), 3-dimensional operating condition settings and 21-

dimensional sensor data. The number of remaining cycles to failure of each test 

engine is given in another txt file. 

Table I. C-MAPSS DATASET 

Sub dataset FD001 FD002 FD003 FD004 

Number of training engines 100 260 100 249 

Number of test engines 100 259 100 248 

Operating conditions 1 6 1 6 

Fault modes 1 1 2 2 

In some cases, predicting failure early is better than late. Late prediction 

may lead to accidents because condition-based maintenance is too late to perform, 

while early failure warning will not pose life threatening. So an unbalanced 

evaluation indicator score is employed to penalize late prediction. Its definition is 

denoted as (6). 

s = {
∑ 𝑒

−(
𝑑𝑖

𝑎1
)

− 1  𝑓𝑜𝑟 𝑑𝑖 < 0𝑛
𝑖=1

∑ 𝑒
−(

𝑑𝑖

𝑎2
)

− 1  𝑓𝑜𝑟 𝑑𝑖 ≥ 0𝑛
𝑖=1

   () 

where s is the computed score, 𝑛 is the number of test engines, 𝑑𝑖 = 𝑅𝑈𝐿𝑒𝑠𝑡
𝑖 −

𝑅𝑈𝐿𝑡𝑟𝑢𝑒
𝑖  (Estimated 𝑅𝑈𝐿𝑖  – True 𝑅𝑈𝐿𝑖) is the estimation error of engine 𝑖, 

𝑎1 = 13 and 𝑎2 = 10. 

We can know from (6) that if there are some instances whose 𝑑 is large 

enough, then the score will grow exponentially. Another evaluation index is Root 

Mean Square Error (RMSE), which is given by (7). Compared with score it 

penalizes estimation errors equally.  

    RMSE =  √
1

𝑛
∑ 𝑑𝑖

2𝑛
𝑖=1     (7) 

where 𝑑𝑖 = 𝑅𝑈𝐿𝑒𝑠𝑡
𝑖 − 𝑅𝑈𝐿𝑡𝑟𝑢𝑒

𝑖
 (Estimated 𝑅𝑈𝐿𝑖 – True 𝑅𝑈𝐿𝑖) is the estimation 

error of engine 𝑖, 𝑛 is the number of test engines. 

4.2 Data Normalization 

The raw data are collected from many different sensors with various value 

scales, and it is not beneficial to use these data to make estimation directly. To 

convert the raw data to desirable form, data preparation is necessary. In order to 

compare our results with previous studies, here we choose the same z-score 

normalization:  

     z =
𝑥−𝜇

𝜎
      (8) 

where 𝜇 is the mean and 𝜎 is the corresponding standard deviation. 

However, engines in subsets FD002 and FD004 run in six different 

operating conditions, and it should be taken into consideration that the sensor 
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parameters can be affected by various operating conditions. This problem can be 

solved by clustering all running data into six species based on operating 

conditions and conducting z-score normalization on cycles belong to same 

condition separately. The clustering result of operating conditions based on K-

means is shown in Fig. 4.  

 
Fig.4 Clustering result of operating conditions based on K-means. 

4.3 RUL Estimation 

After reconstructing all engines in dataset, we can see that engines degrade 

variously and their lifetimes are individualized, which verify fixed RUL target 

function or degradation model is too restricted for complex systems. Fig.5 shows 

reconstruction errors and degradation curves of engines in training set and test set. 

Degradation curve is obtained by filtering the corresponding reconstruction error. 

We can see that fast degradation begins around 150th cycle in this training engine, 

and degradation curve of test engine starts at about 0.5, which indicates a slight 

deviation from the healthy state. 

 

 
Fig.5. Reconstruction error (Top left) and degradation curve (Top right) of training engine, 

reconstruction error (Bottom left) and degradation curve (Bottom right) of test engine 
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Fig.6. Segments in sliding window are combined to calculate CID with a step length of 1 and 

𝑅𝑈𝐿𝑗
𝑖  is calculated after finding the most similar segment. 

Fig.6 shows the process of getting similarity and corresponding RUL 

between test curve and model curve. A sliding window of the same length as test 

series is used to calculate CID with a step length of 1. Two sequences with 

smallest distance are considered to be in the same degradation state and the 

reciprocal of this smallest CID is denoted as their similarity. We can see there 

exist a time lag between two sequences with smallest CID, which means the test 

engine begin to run with initial wear and degrade similarly to the template engine 

at that point. Based on the lengths of two curves and the time lag, corresponding 

𝑅𝑈𝐿𝑗
𝑖  can be calculated by (9). 

   𝑅𝑈𝐿𝑗
𝑖 =  N𝑚𝑜𝑑𝑒𝑙

𝑗 − 𝑁𝑡𝑒𝑠𝑡
𝑖 − 𝑁𝑡   (9) 

where 𝑅𝑈𝐿𝑗
𝑖  is the corresponding RUL between 𝑖-th test curve and 𝑗-th model 

curve, N𝑚𝑜𝑑𝑒𝑙
𝑗

 is the number of running cycles of model curve 𝑗, 𝑁𝑡𝑒𝑠𝑡
𝑖  is the 

number of running cycles of test engine 𝑖 and 𝑁𝑡 is the length of time lag. 

After getting all sim(𝑄𝑖 , 𝐶𝑗)  and 𝑅𝑈𝐿𝑗
𝑖 , the estimated RUL can be 

calculated as (10), where 𝑅𝑈𝐿𝑒𝑠𝑡
𝑖  is the estimated RUL of engine 𝑖, 𝑚 is the 

number of useful corresponding RULs. 

𝑅𝑈𝐿𝑒𝑠𝑡
𝑖 =  

sim(𝑄𝑖,𝐶1)

∑ sim(𝑄𝑖,𝐶𝑗)𝑚
𝑗=1

× 𝑅𝑈𝐿1
𝑖 +

sim(𝑄𝑖,𝐶2)

∑ sim(𝑄𝑖,𝐶𝑗)𝑚
𝑗=1

× 𝑅𝑈𝐿2
𝑖 + ⋯ +

sim(𝑄𝑖,𝐶𝑚)

∑ sim(𝑄𝑖,𝐶𝑗)𝑚
𝑗=1

× 𝑅𝑈𝐿𝑚
𝑖  (10) 

In order to achieve results with high confidence, only those corresponding 

RULs whose similarities are not less than 70% of the maximum similarity are 

used. An example of one test engine’s similarity distribution with all model curves 

is shown in Fig.7. 

 
Fig.7. An example of one test engine’s similarity distribution with all model curves. It is obvious 

that some model curves are far from the test curve. 
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4.4 Performance Comparison 

As a public dataset, there are many studies on C-MAPSS dataset. Here we 

compare our results with some researches which are conducted with the fixed 

RUL target function and same normalization method as well as evaluation 

indexes. As shown in Table II and III, our proposed method makes progress in 

both RMSE and score. This is because the unsupervised learning autoencoder can 

capture degradation information adequately and similarity measurement with CID 

can make full use of historical information. 

TABLE II. SCORE COMPARISON ON C-MAPSS DATASET 

Sub dataset FD001 FD002 FD003 FD004 

SVR [9] 1.38 × 103 5.90 × 105 1.60 × 103 3.71 × 105 

RVR [9] 1.50 × 103 1.74 × 104 1.43 × 103 2.65 × 104 

CNN [9] 1.29 × 103 1.36 × 104 1.60 × 103 7.89 × 103 

Deep LSTM [8] 3.38 × 102 4.45 × 103 8.52 × 102 5.55 × 103 

Our method 3.24 × 102 3.25 × 103 6.73 × 102 4.12 × 103 

TABLE III. RMSE COMPARISON ON C-MAPSS DATASET 

Sub dataset FD001 FD002 FD003 FD004 

SVR [9] 20.96 42.00 21.05 45.35 

RVR [9] 23.80 31.30 22.37 34.34 

CNN [9] 18.45 30.29 19.82 29.16 

Deep LSTM [8] 16.14 24.49 16.18 28.17 

Our method 15.09 21.34 15.23 24.68 

5 Discussion and Conclusion 

In this paper, we combine autoencoder and similarity measurement to 

estimate RUL of aircraft engines. An autoencoder is trained to capture hidden 

correlation of multi-sensor data and extract degradation curve of engines. During 

estimation, a sliding window and CID are used to calculate the similarity between 

test curves and each model curve, making full use of historical information. The 

experiment result proves that our method can obtain individualized degradation 

models of engines adequately and improve the accuracy of aircraft engine RUL 

estimation. 

Though comparison with other researches shows our approach is effective, 

it should be noted that it is still limited. Since we need to build a degradation 

curve template library, training objects need to be run-to-failure, or in other words 

remaining cycles at certain time is necessarily known. 

Further improvements are still available. In the process of degradation 

model extraction, we just use a basic autoencoder architecture, and more complex 

structure such as sparse autoencoder and denoising autoencoder can be tried to 

improve representative learning ability. In addition, different distance calculation 

methods can also be explored to make estimation more robust. 
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