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Abstract Nowadays phased microphone arrays have become a standard tech-
nique for acoustic source localization. The conventional beamforming con-
structs a dirty map of source distributions from array microphone pressure
signals. Conventional beamforming is simple and robust, however its main
disadvantages include poor spatial resolution particularly at low frequencies
and poor dynamic range due to side-lobe effects. Deconvolution algorithms
reconstruct a clean map of source distributions from a dirty map via iterative
deconvolution, and thus can significantly improve the spatial resolution. Many
deconvolution algorithms that have developed in many fields of imaging, such
as optical and radio astronomy or optical microscopy, have gradually applied
in acoustic-array measurements. The performances of these deconvolution al-
gorithms have been compared using simulated applications and experimental
applications with simple sound source distributions. However these compar-
isons are not carried out in experimental applications with complex sound
source distributions. In this paper, the performances of five deconvolution al-
gorithms (DAMAS, CLEAN-SC, NNLS, FISTA and SpaRSA) are compared
in an airframe noise test, which contains very complex sound source distribu-
tions. DAMAS and CLEAN-SC achieve better spatial resolution than NNLS,
FISTA and SpaRSA. DAMAS need more computational effort compared with
CLEAN-SC. In addition, DAMAS can significantly reduce computational run
time using compression computational grid. DAMAS with compression com-
putational grid and CLEAN-SC are thus recommended for source localizations
in experimental applications with complex sound distributions.
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1 Introduction

Nowadays with the improvement of people’s living standards, the demand for
quiet and a comfortable environment is getting stronger and stronger. At the
same time, the interest for acoustic source localization has been increasingly
growing. Beamforming with arrays of microphones is indispensable for the
localization of sound sources on moving objects, on flying aircraft, on high-
speed trains, on motor cars in motion, on open rotors like helicopter and wind
turbine rotors [1].

In order to better represent the distributed noise (such as the aerodynamic
noise from the airframe) in microphone array measurements, the deconvolution
algorithms are required. Deconvolution algorithms reconstruct a clean map of
source distributions from a dirty map by iteratively deconvolution, and thus
can significantly improve the spatial resolution [2–5].

For that purpose, a variety of deconvolution algorithms have been de-
veloped in the last several decades. In 1974, the non-negative least-squares
(NNLS) was introduced by Lawson and Hanson [6], where all calculations are
accelerated by spectral procedures. In 1998, Dougherty and Stoker [7] first
applied CLEAN algorithm in sound source localization. Sijtsma [8] extended
CLEAN to CLEAN-SC, which based on spatial source coherence. Unlike other
deconvolution algorithms, it does not use the point spread function. It works
well in combination with CSM (cross spectra matrix) diagonal removal [9].
At the 2004 AIAA/CEAS Aeroacoustic Conference, a breakthrough of de-
convolution algorithms in acoustic microphone array technology was reported
by Brooks and Humphreys, they applied DAMAS algorithm in acoustic ar-
ray measurements [10, 11]. Between 2005 and 2006, Brooks and Humphreys
extended it to three-dimensional acoustic image [12] and for coherent acous-
tic sources [13]. Unfortunately, DAMAS usually requires high computational
effort in most situations. In 2017, Ma and Liu [14–16] published their work
on compression computational grid, where they can successfully improve the
efficiency of DAMAS via compression computational grid that only contains
the significant grid points and does not contain the redundant grid points.

On many occasions, it has turned out that it is necessary to have a bet-
ter assessment of these deconvolution algorithms using a set of common data
sets. Many researchers have drawn the attention of the comparison of these
deconvolution algorithms using simulated applications and experimental ap-
plications with simple sound source distributions. Ehrenfried et al. [17] have
applied the three deconvolution algorithms DAMAS2 [18], the Fourier-based
NNLS and Richardson-Lucy (RL) [19, 20] to reconstruct the source distribu-
tions from the dirty map with a line array and a one-dimensional region of
interest. Herold et al. [21] compared several deconvolution algorithms using
data from an aeroacoustic measurement of NACA 0012 airfoil positioned in
an open jet. Recently, Bahr et al. [22] compared several common microphone
phased array processing techniques applied to two open datasets. However the
comparison of DAMAS, CLEAN-SC, NNLS, FISTA and SpaRSA haven’t been
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carried out in experimental applications with complex sound source distribu-
tions.

The main purpose of this paper is to determine which deconvolution algo-
rithms (DAMAS, CLEAN-SC, NNLS, FISTA and SpaRSA) can play a better
role for source localization in experimental applications with complex sound
distributions. The benchmark test DLR1 is used to assess these deconvolution
algorithms. The DLR1 benchmark test consists of a test configuration with
a Dornier-728 semispan (or half) model in the high-lift configuration in the
cryogenic wind tunnel at the DLR Cologne site (Kryo-Kanal Koeln, DNW-
KKK) [23]. One goal is to carry out the application of several deconvolution
algorithms in aeroacoustic measurements. Another objective is to carry out
the comparison of these deconvolution algorithms.

The rest of this paper is organized as follows. Conventional beamforming
and deconvolution algorithms are illustrated in Section 2. Experimental ap-
plications with complex source distributions are carried out in Section 3. A
discussion is given in Section 4. Finally, conclusions are presented in Section
5.

2 Conventional beamforming and deconvolution algorithms

Conventional beamforming is simple and robust. Conventional beamforming
can construct a dirty map of source distributions from array microphone pres-
sure signals. However its main disadvantages include poor spatial resolution
particularly at low frequencies and poor dynamic range due to side-lobe effects.

Brooks and Humphrey [10, 11] proposed DAMAS algorithm, which is an
iterative algebraic deconvolution algorithm. DAMAS aims at solving the con-
volution equation by a Gauss-Seidel procedure, replacing nonphysical negative
solutions by zero and achieving more accurately quantify position and strength
of acoustic sources.

In order to remove side lobes actually measured beam patterns. Sijtsma [8]
launched CLEAN-SC. CLEAN-SC can successfully extract absolute sound
power levels from the source plots [8]. CLEAN-SC basically performs a de-
composition of the CSM into coherent components. Unlike other deconvolu-
tion algorithms, it does not use the point spread function. It works well in
combination with CSM diagonal removal.

NNLS [6] algorithm aims directly at the minimization of the square sum of
the residuals. A gradient-type procedure is used to solve the NNLS problem.

FISTA [24] deconvolution algorithm is ideally suitable for image recon-
struction from indirect and possibly under-sampled data and can achieve high
computational simplicity.

Sparse Reconstruction by Separable Approximation (SpaRSA) is an iter-
ative deconvolution algorithm to a minimum of the objective function and
suitable for solving large-scale optimization problems involving the sum of a
smooth error term and a possibly non-smooth regularizer [25]. SpaRSA has
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far-reaching effects in the field of imaging. More details for SpaRSA can be
found in [25].

3 Experimental applications

In this section, five different deconvolution algorithms (DAMAS, CLEAN-
SC, NNLS, FISTA and SpaRSA) are applied to benchmark test DLR1. This
acoustic-array measurement [23] performed in a cryogenic wind tunnel at the
DLR Cologne site, Kryo-Kanal Koeln (DNW-KKK) using a 9.24% Dornier
728 half-model. This cryogenic wind tunnel is a continuous-flow low-speed
wind tunnel (DNW-KKK) with a 2.4×2.4 m closed-wall test section. By in-
jection of liquid nitrogen, This wind tunnel can be operated in the range of
100 < T < 300K at Mach number up to 0.38. Fig. 1 indicates the test setup.
A spiral microphone array consisting of 144 microphones is designed and con-
structed for this measurement. The array is mounted by the compressed lami-
nated wood onto the sidewall, and the Dornier 728 half-model is located in the
center of the test section. The model of scale 1:9.24 is configured in a landing
configuration and has a mean aerodynamic chord length of 0.353m and a half-
span width of 1.44m. More details for this measurement can be found in [23].
Recently, a comparison of microphone phased array methods applied to the
benchmark test DLR1 was carried out by Bahr et al. [22].

Fig. 1 Photo of the test section with the array mounted on the side wall (left) and the
Dornier 728 half-model in the center, view in flow direction. Drawing of the measurement
setup (right) [23].

The data processing is carried out on an Intel Core i5-4210H 2.90GHz
processor with MATLAB. The information of this data processing is listed
in Table 1. The choice of angle of attack, Mach number, temperature and
plotting scale is for the sake of comparison with the deconvolution result of
Bahr et al. [22]. The computational grid used in this paper is the same as
that in the benchmark. The rotation of the computational grid is the same
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as that introduced in Bahr et al. [22]. In the calculation of the dirty map of
conventional beamforming, CSM is directly from the benchmark test data. In
the process of calculating the steering vector, the influence of Mach number
is taken into account. There are two different experimental applications, in
which frequencies are f = 8496Hz and f = 6300Hz, respectively, plotted in
Fig. 2 and 3. The computational run time of these experimental applications
is listed in Table 2.

3.1 Spatial resolution

3.1.1 Case 1, f = 8496Hz

The deconvolution results of f = 8496Hz case is very similar to the recent
deconvolution results of Bahr et al. [22].

The dirty map of conventional beamforming shown by Fig. 2(a) is quite
similar to the source maps of conventional beamforming contributed by DLR
has shown in Fig. 4(a) in [22]. There are two main noise sources when f =
8496Hz. One is the slat noise near the leading edge. The other one is the flap
side edge noise.

Fig. 2(b) indicates the clean map of DAMAS on original grid which is very
similar to the DAMAS result contributed by DLR in Fig. 5(h) in [22]. The
slat noise and the flap noise are well distributed in this clean map, due to
significantly improved spatial resolution.

The clean map of CLEAN-SC shown in Fig. 2(c) is also quite similar to
the CLEAN-SC result contributed by DLR in Fig. 4(c) in [22]. This clean map
can achieve high spatial resolution containing exactly one source on every slat
and one source on the flap side edge.

In Fig. 2(d), Fig. 2(e) and Fig. 2(f), NNLS, FISTA and SpaRSA are applied
to the benchmark DLR1 that shows only slightly fewer sources. However, the
peak level is nearly as same as the result of DAMAS and CLEAN-SC.

Compared with Fig. 2(a), the clean map of DAMAS with compression
computational grid based on conventional beamforming (denoted by DAMAS-
CG2 [14]) shown in Fig. 2(g) can retain the spatial resolution of DAMAS on
original grid.

3.1.2 Case 2, f = 6300Hz

In order to carry out this comparison in different frequencies, in the second
application frequency is set as 6300Hz. In this case, there is only one high
region dominated the dirty map of conventional beamforming. That is the
slat noise near the leading edge. As shown in Fig. 3(b), Fig. 3(c) and Fig.
3(g), DAMAS, CLEAN-SC and DAMAS-CG2 can identify separately most slat
noise sources. Fig. 3(d), Fig. 3(e) and Fig. 3(f) show the deconvoluted results
of NNLS, FISTA and SpaRSA. The spatial resolutions are a little slighter than
that of DAMAS, CLEAN-SC and DAMAS-CG2.
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Fig. 2 Sound pressure level maps of Benchmark test DLR1. f = 8496Hz. The location of
the Dornier 728 half-model is sketched in the background. (a) Dirty map of conventional
beamforming. (b)Deconvolved map of DAMAS on original grid. (c) Deconvolved map of
CLEAN-SC. (d) Deconvolved map of NNLS. (e) Deconvolved map of FISTA.(f) Deconvolved
map of SpaRSA. (g) Deconvolved map of DAMAS on compression grid.
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Fig. 3 Sound pressure level maps of Benchmark test DLR1. f = 6300Hz The location of
the Dornier 728 half-model is sketched in the background. (a) Dirty map of conventional
beamforming. (b)Deconvolved map of DAMAS on original grid. (c) Deconvolved map of
CLEAN-SC. (d) Deconvolved map of NNLS. (e) Deconvolved map of FISTA.(f) Deconvolved
map of SpaRSA. (g) Deconvolved map of DAMAS on compression grid.
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Table 1 Information of data processing

Angle of attack 3◦

Mach number 0.25
Temperature 290K
Grid resolution 20mm
The computational grid 53 × 73 with 3869 points in x-y plane
Plotting scale 20dB
Number of iterations 2000

Table 2 Computational run time of different deconvolution algorithms

Deconvolution algorithms
Computational run time

Case 1 Case 2

DAMAS 1416s 1623s
CLEAN-SC 51s 33s
NNLS 1255s 1456s
FISTA 1264s 1470s
SpaRSA 1370s 1790s
DAMAS-CG2 237s 501s

3.2 Computational run time

The computational run time of different deconvolution algorithms in Case 1
and Case 2 is shown in Table 2. The computational efficiency of CLEAN-SC
is obvious in both two cases.

In Case 1, the computational run time of DAMAS, NNLS, FISTA and
SpaRSA are 1416s, 1255s, 1264s and 1370s, respectively, while that of CLEAN-
SC is only 51s.

In Case 2, the computational run time of DAMAS, NNLS, FISTA and
SpaRSA are 1623s, 1456s, 1470s and 1790s, respectively, while that of CLEAN-
SC is only 33s.

DAMAS-CG2 can successfully reduce computational run time. The com-
puter run time of DAMAS-CG2 in both two cases are only 237s and 501s,
respectively.

4 Discussion

In this paper in order to compare the performance of five different decon-
volution algorithms (DAMAS, CLEAN-SC, NNLS, FISTA and SpaRSA) in
experimental applications with complex sound distributions, we apply these
deconvolution algorithms to the benchmark DLR1.

The following statements are only valid for the angle of attack α = 3◦,
Ma = 0.25, T = 290K, f = 8496Hz & f = 6300Hz, the grid resolution
dxy = 20mm and plotting scale 20dB.
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When applied to aeroacoustic measurements with complex sound source
distributions, these deconvolution algorithms are observed to behave as fol-
lows:

– Conventional Beamforming
The result of conventional beamforming is a dirty map and all sound
sources are visible. However it has poor spatial resolution and side-lobe
effects.

– DAMAS and CLEAN-SC
DAMAS and CLEAN-SC can significantly improve spatial resolution. Noise
sources can be well distributed.

– NNLS, FISTA and SpaRSA
NNLS, FISTA and SpaRSA can only distinguish slightly fewer source.

– Computational Efficiency
CLEAN-SC is much faster than DAMAS, NNLS, FISTA and SpaRSA.
However, DAMAS-CG2 can achieve similar spatial resolution with DAMAS.
The computational run time of DAMAS-CG2 is longer than CLEAN-SC.
While compared with other three deconvolution algorithms, DAMAS-CG2
can greatly reduce the computational run time.

5 Conclusion

Five different deconvolution algorithms (DAMAS, CLEAN-SC, NNLS, FISTA
and SpaRSA) are compared through applications to the benchmark DLR1.
The spatial resolution and computational run time are selected as the main
criteria in this comparison.

In terms of spatial resolution, every deconvolution algorithms described
above can distribute the dominant sound source. DAMSA and CLEAN-SC can
successfully improve the spatial resolution and achieve higher spatial resolution
than NNLS, FISTA and SpaRSA.

In terms of computational run time, CLEAN-SC is much faster than the
other four deconvolution algorithms described above. DAMAS with compres-
sion computational grid can significantly reduce computational run time.

In order to obtain higher spatial resolution and greatly improve the compu-
tational efficiency, DAMAS with compression computational grid and CLEAN-
SC are thus recommended for source localization in experimental applications
with complex sound distributions. For the future investigations, it will be of
interest to improve the computational efficiency of NNLS, FISTA and SpaRSA.
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