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Abstract: The availability of multi-source image by different sensors poses a serious challenge for 

object detection. However, the varied spatial structure by multi-source images make object 

detection difficult. Multi-model image fusion provides a possibility to improve the performance of 

object detection. In this paper, we propose a fusion object detection scheme with convolutional 

neural network. First, nine kinds of image fusion methods are adopt to fuse multi-source images. 

Second, a novel object detection frameworks with Faster RCNN (Region-based Convolutional 

Neural Network) structure is utilized, which suitable for large-scale satellite images. We use the 

Region Proposal Network (RPN) to generate axially aligned bounding boxes in different 

orientations, then extract features by pooling layers with different sizes. The features are used to 

classify the proposals, adjust the bounding boxes and predict the score. Smaller anchor for small 

objects is added. Finally, inclined non-maximum suppression method is utilized to get the detection 

results. Experimental results showed that the object detection method performs better than YOLO-

v2, YOLO-v3 frameworks on satellite imagery and the proposed fusion object detection method 

has a significant improvement over object detection method with single image. Some numerical 

tests are reported to illustrate the efficiency of the proposed method. 
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1 Introduction 

 

Object detection is an important and challenging research 

hotspot in the field of computer vision and digital image 

processing. It is widely used in many fields, such as robot 

navigation, intelligent video surveillance, industrial detection, 

aerospace, etc. It is an important branch of image processing 

and computer vision, and also the core part of intelligent 

monitoring system. At the same time, object detection is also 

a basic algorithm of object recognition, which plays a vital 

role in subsequent recognition tasks. Because of the extensive 

application of deep learning, object detection algorithm has 

been developed rapidly. It has made great strides in the past 

few years since the convolutional neural networks (CNN)[1] 

method was used and won in the ImageNet competition[2] in 

2012.  Satellite images are important information resource of 

great significance to national security and economic and 

social development. Because of its practicability and 

timeliness, it is widely used in military reconnaissance, 

disaster monitoring, environmental monitoring, resource 

investigation, land use assessment, agricultural output 

estimation, urban construction planning, etc. It has important 

significance for national defense security, economic and 

social development. Although the deep learning methods 

perform well in the task of object detection of ground images, 

it is not easy to transfer this technology to satellite images. 

There are four main problems that the algorithm needs to 

satisfy. Firstly, the resolution of satellite images are ultra high, 

usually up to megapixels. Secondly, the objects such as ships, 

small vehicles, planes are extremely small and dense in 

satellite images, rather than the obvious large target objects 

in typical and common datasets such as PASCAL VOC[3] and 

ImageNet. Thirdly, there is a relative lack of public training 

datasets. And the problem of complete rotation invariance. 

Many target objects such as cars, ships and planes have lots 

of orientation when viewed from overhead. Among these 

problems, the primary problem and the biggest challenge is 

that the input images are enormous, while the objects are very 

small, which is a quite complex task for traditional computer 

vision technology. 

There are many kinds of observation methods in satellite 

missions, such as RGB image, infrared image, hyperspectral 

image, multispectral image and SAR image. Multi-source 

images by different sensors are widely used in military and 

civilian fields. Detection and recognition of important objects 

can monitor the distribution of targets in key areas, analyze 

the enemy's operational strength, master operational 

intelligence at sea, and conduct precise guidance. In recent 

years, with the rapid development of earth observation 

technology, many optical remote sensing imaging satellites 

with high spatial resolution have emerged. Panchromatic 

images with sub-meter resolution can be obtained, which 

provides a very rich data source for space multi-source image 

object detection. However, because of the disadvantageous 

mailto:yaying,%20hanpan,%20zljing,%20lightness,%20qiaolf927%7d@sjtu.edu.cn


  

factors such as multi-view imaging, long shooting distance, 

cloud, haze occlusion, uneven illumination, brightness and 

colour differences, multiplicative noise, etc. It is easy to 

cause false alarm and missed detection. How to detect and 

extract objects accurately, quickly and steadily and gain more 

response and processing time based on multi-source image 

information on satellite has become an urgent problem to be 

solved.  

In this paper, we propose a fusion object detection 

scheme with convolutional neural network. Multi-model 

image fusion provides a possibility to improve the 

performance of object detection. First, nine kinds of image 

fusion methods are adopt to fuse multi-source images. 

Second, a novel object detection frameworks with Faster 

RCNN structure is utilized, which suitable for large-scale 

satellite images. To detect objects in any orientation, the 

bounding boxes are in different orientations, and then extract 

features by pooling layers with different sizes. The features 

are used to classify the proposals, adjust the bounding boxes 

and predict the text score. Smaller anchor for small objects is 

added. Finally, inclined non-maximum suppression method 

is utilized to get the detection results.  

Section 2 introduces related work about object detection 

and image fusion. Section 3 part 1 describes the image fusion 

methods we utilized and part 2 details our object detection 

method for satellite imagery. Section 4 describes the datasets 

we used in our experiments. Finally, in Section 5, the 

evaluation indicators are introduced and the experimental 

results of our algorithm are showed and discussed in detail. 

2 Related Work 

2.1 Deep Learning 

Hinton et al. first proposed Deep Neural Network[4] as the 

representative of deep learning technology in 2006, which 

attracted the attention of academia. Bengio, LeCun et al. 

followed up the relevant research, which opened the upsurge 

of deep learning research. Convolutional Neural Network 

(CNN) is a deep neural network with convolution structure, 

sparse connection and weight sharing. Its characteristics can 

reduce the scale of parameters of the neural network, reduce 

the complexity of model training, and avoid the cumbersome 

feature extraction and data reconstruction in traditional 

algorithms. At the same time, convolution preserves the 

spatial information of image pixels, and has the invariance of 

translation, rotation and scale. When multi-dimensional 

images are directly input into the network, this advantage is 

more obvious. In 1989, LeNet-5[ 5 ], a CNN model, was 

proposed by LeCun et al. for handwritten characters 

recognition. This method achieved satisfactory results. In 

2012, AlexNet[6], a CNN model constructed by Krizhevsky 

et al. greatly reduced the error rate in image classification of 

ImageNet large-scale visual recognition challenge 

competition, refreshed the record of image classification, and 

established the position of deep learning in computer vision. 

Deep learning uses multi-layer computing model to learn 

abstract data representation from complex structures in 

numerous data. This technology has been successfully 

applied to many pattern classification problems, including 

computer vision. 

2.2 Object Detection 

The analysis of object motion in computer vision can be 

roughly divided into three levels: motion segmentation, 

object detection, object tracking, action recognition and 

behaviour description[7]. Object detection is not only the basic 

tasks in the field of computer vision, but also the basic task 

of video surveillance technology. Because the objects in 

video have different attitudes and often occlude, and their 

motion is irregular, and considering the conditions of depth 

of field, resolution, weather, illumination and the diversity of 

scene, the results of object detection algorithm will directly 

affect the follow-up tracking, action recognition and 

behaviour description. Therefore, even in today's 

technological development, the basic task of object detection 

is still a very challenging subject, which has great potential 

and space for improvement. 

Traditional object detection methods usually use shallow 

trainable architectures and handcrafted features. Object 

detection including two sub-tasks: object location to 

determine where objects are located in given images and 

object classification to determine which category the objects 

belong to. The pipeline of traditional object detection are 

generally divided into three stages: informative region 

selection, feature extraction and classification. But the 

performance of traditional methods is not good when 

constructing complex ensembles which combine multiple 

low-level image features with high-level context from object 

detectors and scene classifiers[8]. With the rapid development 

in deep learning, an obvious gain is achieved. Girshick R et 

al. proposed Regions with CNN (R-CNN)[9] features. Deep 

learning methods have the capacity to learn more complex 

features than the traditional methods and learn informative 

object representations rather than design features manually[10].  

In the domain of deep learning-based object detection, 

three of the best rapid object detection schemes are: Faster R-

CNN[11], SSD[12], and YOLO[13][14][15]. Faster R-CNN uses 

1000 × 600 pixel input images, SSD runs on 300 × 300 or 

512 × 512 pixel inputs, and YOLO ingests 416 × 416 or 544 

× 544 pixel images. These frameworks have good 

performance, but it is difficult to process satellite imagery[16]. 

Faster R-CNN is a typical model. It inspired numerous 

detection and segmentation models that came after it. R-CNN 

first proposes regions, then extracts features, and then 

classifies those regions based on their features. It was 

intuitive, but the speed is very slow. R-CNN’s immediate 

descendant was Fast R-CNN[ 17 ]. Fast R-CNN performed 

much better in terms of speed. But the selective search 

algorithm for generating region proposals was a big 

bottleneck. Faster R-CNN’s main insight was to replace the 



slow selective search algorithm with a fast neural net and 

introduced the Region Proposal Network (RPN). 

Most object detection methods are detecting horizontal 

bounding boxes, J. Ma et al. proposed Rotation Region 

Proposal Network (RRPN)[ 18 ] to detect arbitrary-oriented 

scene text which based on Faster R-CNN. An algorithm 

called Rotational Region CNN[19] based on RRPN can detect 

arbitrary-oriented texts in natural scene images, our goal is to 

detect small objects in any orientation, therefore our work 

used the Rotational Region CNN framework and added 

smaller anchor for small objects in satellite imagery. 

2.3 Image Fusion 

Fusing multi-band images has became a thriving area of 

research in a number of different fields, such as space 

robotics, remote sensing, etc. Multi-band image 

fusion[20][21][22][23][24] aims to combine spatial and spectral 

information from one or multiple observations and other 

image sources, such as panchromatic images, multispectral 

images or hyper-spectral images. Pansharpening aims at 

fusing a multispectral and a panchromatic image, featuring 

the result of the processing with the spectral resolution of the 

former and the spatial resolution of the latter[25]. 

Panchromatic (PAN) and multispectral (MS) image 

fusion method originated in 1980s[ 26 ][ 27 ]. Since SPOT-1 

satellite provided panchromatic and multispectral images 

simultaneously in 1986, fusion methods have developed 

rapidly. Generally, fusion methods can be classified into 

three categories[28]: component replacement fusion methods, 

multi-resolution analysis fusion methods and model-based 

fusion methods. Among them, the component replacement 

method is the simplest and most popular fusion method, 

which has been widely used in professional remote sensing 

software such as ENVI and ERDAS. First, the luminance 

component is obtained based on spectral transformation, and 

then the spatial information of multispectral image is 

enhanced by replacing the luminance component with 

panchromatic image. Typical methods include Principal 

Component Analysis (PCA) fusion[29], Gram-Schmidt (GS) 

fusion[ 30 ], Intensity-Hue-Saturation (IHS) fusion[ 31 ] etc. 

Multi-resolution analysis fusion method extracts high spatial 

structure information of panchromatic image based on 

wavelet transform or Laplacian pyramid, and injects the 

extracted spatial structure information into multispectral 

image to obtain high spatial resolution fusion image with a 

certain injection model[32], such as multi-hole wavelet fusion 

method[33], Laplace pyramid fusion method[34] and Contourlet 

wavelet fusion method[35]. For component substitution fusion 

method and multi-resolution analysis fusion method, Tu et 

al[36] further extended them to the same fusion framework, 

which greatly promoted the development of 

panchromatic/multi-spectral fusion method.  

3 Proposed Approach 

3.1 Object Detection Framework 

In the field of deep learning-based object detection, 

Faster R-CNN is a canonical model. The original model of 

Faster R-CNN is R-CNN, it worked as: 

 Selective Search: scan the input image for possible 

objects, and generate about 2000 region proposals. 

 Run a CNN on top of each of these region proposals. 

 Feed the output took from each CNN into an SVM 

to classify the region and a linear regressor to tighten the 

bounding box of the object if exists. 

The speed of R-CNN is very slow. Fast R-CNN improved 

the detection speed through performing feature extraction 

over the image before proposing regions. Instead of running 

2000 CNN’s over 2000 overlapping regions, it running only 

one CNN over the entire image. And using softmax layer to 

replace the SVM. But the selective search algorithm for 

generating region proposals is a bottleneck problem. The 

main contribution of Faster R-CNN was to replace the slow 

selective search algorithm with a fast neural net. Specifically, 

it introduced the Region Proposal Network (RPN). It worked 

as follows: 

 At the last layer of an initial CNN, a 3x3 sliding 

window moves across the feature map and maps it to a lower 

dimension. 

 For each sliding-window location, it 

generates multiple possible regions based on k fixed-

ratio anchor boxes. 

 Each region proposal consists of an “objectness” 

score for that region and 4 coordinates representing the 

bounding box of the region. 

In a sense, Faster R-CNN = RPN + Fast R-CNN[37]. SSD 

and YOLO etc. object detection frameworks do not rely on 

region proposal, they estimate object candidates directly. Our 

object detection architecture in this paper named Rotational 

Region CNN [19] is based on the Faster R-CNN, utilizing the 

object candidates proposed by RPN to predict the orientation 

information, its network architecture shows in Figure 1. The 

RPN is used for proposing axis-aligned bounding boxes that 

enclose the arbitrary-oriented objects. For each box generated 

by RPN, 3 different pooled sizes ROI poolings are performed 

and the pooled features are concatenated for predicting the 

objects scores, axis-aligned box and inclined minimum area 

box. Then an inclined non-maximum suppression is 

conducted on the inclined boxes to get the final results. 

 
Fig.1 The network architecture of Rotational Region CNN. 

The objects in satellite imagery are very small, therefore 

smaller anchors are added in RPN. The anchor aspect ratios 

and other settings of RPN are same as Faster R-CNN. The 3 



  

ROI Poolings’ pooled sizes are: 7 × 7, 3 × 11, 11 × 3, which 

can obtain more horizontal and vertical features on small 

scale objects. We estimate both the axis-aligned bounding 

box and the inclined bounding box, therefore we not only do 

normal NMS on axis-aligned bounding boxes and but also do 

inclined NMS on inclined bounding boxes [19], the method 

of calculating Intersection-over-Union (IoU) refer to [38].  

The loss function in the training process is same as Faster R-

CNN, while the loss defined on each proposal is different, it 

includes the object/non-object classification loss and the box 

regression loss as:  

𝐿(𝑝, 𝑡, 𝑣, 𝑣∗, 𝑢, 𝑢∗) = 𝐿𝑐𝑙𝑠(𝑝, 𝑡)                                                 

                     +𝜆1𝑡 ∑ 𝐿𝑟𝑒𝑔(𝑣𝑖 , 𝑣𝑖
∗)

𝑖∈{𝑥,𝑦,𝑤,ℎ}

                                  +  𝜆2𝑡 ∑ 𝐿𝑟𝑒𝑔(𝑢𝑖 , 𝑢𝑖
∗)

𝑖∈{𝑥1,𝑦1,𝑥2,𝑦2,ℎ}
(1)

 

in which 𝜆1 , 𝜆2  parameters balance the trade-off between 

three subformulas and 𝑡  is the indicator of the class label 

(object: 𝑡 = 1 , background: 𝑡 = 0 ). 𝑝 = (𝑝0, 𝑝1)  is the 

parameter means the probability over object and background 

computed by the softmax function. 𝐿𝑐𝑙𝑠(𝑝, 𝑡) =  −𝑙𝑜𝑔 𝑝𝑡  is 

the log loss for true class 𝑡. 𝑣 and 𝑢 are tuples of true axis-

aligned and true inclined bounding box regression targets. 𝑣∗ 

and 𝑢∗  are the predicted tuples for the object label. The 

parameterization for 𝑣 and 𝑣∗ is given in [39], in this paper, 

𝑣 and 𝑣∗specify a scale-invariant translation and log-space 

height/width shift relative to an object proposal. We use 

(𝑤, 𝑤∗)  indicates (𝑣𝑖 , 𝑣𝑖
∗)  or (𝑢𝑖, 𝑢𝑖

∗) , 𝐿𝑟𝑒𝑔(𝑤, 𝑤∗)  is 

defined as: 

𝐿𝑟𝑒𝑔(𝑤, 𝑤∗) = smoothL1(𝑤 − 𝑤∗) (2) 

smoothL1(𝑥) = {
0.5𝑥2            if |𝑥|  < 1
|𝑥| − 0.5     otherwise

(3) 

3.2 Pansharpening Algorithms 

Multi-model image fusion provides a possibility to 

improve the performance of object detection. Pansharpening 

aims at fusing a panchromatic (PAN) and a multispectral (MS) 

image simultaneously acquired over the same area. MS has 

fewer spatial details while PAN only has single band. 

Pansharpening can combine the spatial details resolved by the 

PAN image and the several spectral bands of the MS in a 

unique product. 

Pansharpening methods usually be divided into two main 

classes, the component substitution (CS) methods and the 

multi-resolution analysis (MRA) methods. First, the notation 

used in this paper are described in Table 1: 

Table 1: List of the Main Symbols 

Symbol Description 

MS Multispectral image 

MS̃ MS image interpolated at the scale of PAN 

P PAN image 

MŜ Pansharpened image 

R Spatial resolution ratio between MS and PAN 

N Number of  MS bands 

Vectors in this paper are expressed in bold lowercase (e.g., 

𝐱 ), 𝑥𝑖  indicates the 𝑖 th element. 2-dimensional and 3-

dimensional arrays are indicated in bold uppercase (e.g., 𝐗). 

We use a 3-D array 𝐗 =  {𝐗𝑘}𝑘=1,…,𝑁  to indicate an MS 

image composed by 𝑁 bands indexed by the subscript 𝑘 =
1, … , 𝑁; and 𝐗𝑘 indicates the 𝑘th band of 𝐗. A PAN image is 

a 2-D matrix and will be expressed as 𝐘. 

 A typical formulation of CS fusion is given by 

𝑀𝑆�̂� = 𝑀𝑆�̃� + 𝑔𝑘(𝐏 − 𝐈𝐿), 𝑘 = 1, … , 𝑁 (4) 

in which 𝑘 indicates the 𝑘th spectral band, the vector of the 

injection gains indicated as g = [𝑔1, … , 𝑔𝑘, … , 𝑔𝑁], and 𝐈𝐿 is 

defined as 

𝐈𝐿 = ∑ 𝑤𝑖

𝑁

𝑖=1

𝑀𝑆𝑖
̃ (5) 

in which the weight vector 𝐰 = [𝑤1, … , 𝑤𝑖 , … , 𝑤𝑁] is the 

first row of the forward transformation matrix and can 

measure the degrees of spectral overlap among the MS 

channels and  PAN[40][41].  

The pipeline of CS approach: First, to match the scale of 

PAN, interpolate the MS image; then, calculate the intensity 

component using formula (5) and match the histograms of the 

PAN and the intensity component; finally, inject the 

extracted details by (1).  

The CS approaches include many pansharpening 

methods, in the following, they will be introduced in detail. 

Table 2 summarize the values of the spectral weights and 

injection gains by (5) and (4). In 𝑤𝑘,𝑖 , subscripts 𝑘 and 𝑖 refer 

to output and input bands respectively. 

Table 2: Spectral Weight in (5) and Injection Gains in (4) for several CS-Based 

Methods 

Method w𝑘,𝑖 𝑔𝑘 

BT[42] 1
𝑁⁄  

𝑀𝑆�̃�

𝐼𝐿

 

PCA[43] 𝐗1,𝑖 𝐗1,𝑘 

GS[43] 1
𝑁⁄  

𝑐𝑜𝑣(𝐼𝐿 , 𝑀𝑆�̃�)

𝑣𝑎𝑟(𝐼𝐿)
 

GSA[44] 𝑤�̂�(𝐸𝑞. 6) 
𝑐𝑜𝑣(𝐼𝐿 , 𝑀𝑆�̃�)

𝑣𝑎𝑟(𝐼𝐿)
 

BDSD[45] 𝑤𝑘,𝑖̂ (𝐸𝑞𝑠. (8) − (9)) 𝑔�̂�(𝐸𝑞𝑠. (8) − (9)) 

PRACS[46] 𝑤�̂�(𝐸𝑞. 6) (𝐸𝑞. (11) − (12)) 

IHS 1
𝑁⁄ (𝑁 = 3) 1 

GIHS[47] any 𝑤𝑖 ≥ 0 (∑ 𝑤𝑖)
𝑁

𝑖=1

−1

 

1) PCA 

PCA is achieved through a multidimensional rotation of 

the original coordinate system of the N-dimensional vector 

space, i.e., a linear transformation of the data, such that the 

projection of the original spectral vectors on the new axes, 

which are the eigenvectors of the covariance matrix along the 

spectral direction, produces a set of scalar images, called 

principal components (PCs), that are uncorrelated to each 



other. PCs are generally sorted for decreasing variance, 

which quantifies their information content. 

2) GS 

The GS transformation is a usual technique used in linear 

algebra and multivariate statistics to orthogonalize a set of 

vectors. GS orthogonalization proceeds one MS vector at the 

time, by finding its projection on the (hyper) plane defined 

by the previously found orthogonal vectors and its orthogonal 

component, such that the sum of the orthogonal and 

projection components is equal to the zero-mean version of 

the original vectorized band. Pansharpening is accomplished 

by replacing 𝐈𝐿  with the histogram-matched 𝐏  before the 

inverse transformation is performed [25]. B. Aiazzi, et al. 

proposed adaptive GS (GSA) in [43], in which 𝐈𝐿 is generated 

by a weighted average of the MS bands, with MSE-

minimizing weights by a low-pass-filtered version of PAN: 

𝐏𝐿 = ∑ 𝑤𝑘

𝑁

𝑘=1

𝑀𝑆�̃� (6) 

3) BDSD 

The Band-Dependent Spatial Detail (BDSD) algorithm 

[45] starts from an extended version of the generic 

formulation (4) as follows: 

𝑀𝑆�̂� = 𝑀𝑆�̃� + 𝑔𝑘 (𝐏 − ∑ 𝑤𝑘.𝑖

𝑁

𝑖=1

𝑀𝑆𝑖
̃ ) , 𝑘 = 1, … , 𝑁. (7) 

The coefficients is defined as: 

𝛾𝑘,𝑖 = {
𝑔𝑘                          𝑖𝑓 𝑖 = 𝑁 + 1

−𝑔𝑘 ∙ 𝑤𝑘.𝑖           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8) 

equation (1) can be rewritten in compact matrix form as: 

𝑀𝑆�̂� = 𝑀𝑆�̃� + 𝐇𝛾𝑘 (9) 

in which 𝐇 = [𝑀𝑆1
̃ , … , 𝑀𝑆�̃� , 𝐏], 𝛾𝑘,𝑖 = [𝛾𝑘,1, … , 𝛾𝑘,𝑁+!]

𝑇. 

4) PRACS 

The concept of partial replacement of the intensity 

component is described in [46] named Partial Replacement 

Adaptive CS (PRACS). This method utilizes 𝐏(𝑘) , a 

weighted sum of PAN and of the 𝑘 th MS band, to calculate 

the 𝑘th sharpened band in (4). For 𝑘 = 1, … , 𝑁 , the band-

dependent high-resolution sharpening image is calculated as: 

𝐏(𝑘) = CC(𝐈𝐿 , 𝑀𝑆�̃�) ∙ 𝐏 + (1 − CC(𝐈𝐿 , 𝑀𝑆�̃�)) ∙ 𝑀𝑆�̃�
′

(10) 

The injection gains {𝑔𝑘} are obtained by 

𝑔𝑘 = β ∙ CC(𝐏𝐿
(𝑘)

, 𝑀𝑆�̃�)
𝑠𝑡𝑑(𝑀𝑆�̃�)

1
𝑁

∑ 𝑠𝑡𝑑(𝑀𝑆𝑖
̃ )𝑁

𝑖=1

𝐿𝑘 . (11) 

𝐿𝑘  is defined as: 

𝐿𝑘 = 1 − |1 − CC(𝐈𝐿 , 𝑀𝑆�̃�)
𝑀𝑆�̃�

𝐏𝐿
(𝑘)

| (12) 

The pipeline of the MRA approach: First, interpolate the 

MS image to reach the PAN scale; then calculate the low-

pass version 𝐏𝐿 of the PAN by means of the equivalent filter 

for a scale ratio equal to 𝑅 and compute the band-dependent 

injection gains {𝑔𝑘}𝑘=1,…,𝑁 ; finally, inject the extracted 

details by (13). A brief summary of the MRA-based 

approaches is showed in Table 3. 

𝑀𝑆�̂� = 𝑀𝑆�̃� + 𝑔𝑘(𝐏 − 𝐏𝐿), k = 1, … , N. (13) 

Table 3: MRA-Based Pansharpening Methods and Related MRA Schemes 

With Filters and Injection Gains 

Method Type of MRA and filter 𝑔𝑘 

HPF[29] ATWT w/ Box Filter 1 

HPM[ 48 ]/SFIM[ 49 ][

50] 
ATWT w/ Box Filter 

𝑀𝑆�̃�

𝑝𝐿

 

Indusion[51] DWT w/ CDF Bior. Filt. 1 

MTF-GLP[52] GLP w/ MTF Filter 1 

MTF-GLP-CBD GLP w/ MTF Filter 
𝑐𝑜𝑣(𝑃𝐿, 𝑀𝑆�̃�)

𝑣𝑎𝑟(𝑃𝐿)
 

MTF-GLP-

HPM[53] 
GLP w/ MTF Filter 

𝑀𝑆�̃�

𝑝𝐿

 

MTF-GLP-HPM-

PP 
GLP w/ MTF Filter 

𝑀𝑆�̃�

𝑝𝐿

 

5) Low-Pass Filtering (LPF) 

An implementation of applying a single linear time-invariant 

LPF ℎ𝐿𝑃 to the PAN image 𝐏 to obtain 𝐏𝐿 is given by (14), 

the notation * presents the convolution operator. 

𝑀𝑆�̂� = 𝑀𝑆�̃� + 𝑔𝑘(𝐏 − 𝐏 ∗ ℎ𝐿𝑃), 𝑘 = 1, … , 𝑁 (14) 

6) Pyramidal Decompositions 

This method is commonly referred to as pyramidal 

decomposition utilizing Gaussian LPFs to carry out the 

analysis steps. The Gaussian filters can be tuned to match the 

sensor MTF closely, and allow extracting from the PAN 

those details, which are not seen by the MS sensor because of 

the coarser spatial resolution [25]. 

4 Data Sets  

4.1 Object Detection Training Data 

The training dataset we utilized in our object detection 

algorithm is DOTA[54]. It is a large-scale dataset for object 

detection in aerial images. It can be used to train and evaluate 

object detectors in aerial images. DOTA contains 2806 

images from different sensors and platforms. There are 15 

categories in total in DOTA dataset, including large vehicle, 

small vehicle, plane, helicopter, ship, harbour, bridge, 

baseball diamond, basketball court, soccer ball field, tennis 

court, ground track field, roundabout, basketball court and 

storage tank. The size of each image range from about 800 × 

800 to 4000 × 4000 pixels. The objects in DOTA have a wide 

variety of scales, orientations, and shapes.  

There are 188, 282 instances of the fully annotated 

DOTA images annotated by an arbitrary quadrilateral. Figure 

2 shows examples of annotated DOTA images. 

 



  

 
Fig.2 Examples of annotated DOTA images. 

4.2 Lateral-directional control architecture 

For image fusion, we use three data sets: 

1) Pléiades data set 

The Pléiades data set was used for the 2006 contest[55], 

which was collected by an aerial platform and provided by 

CNES, the French Space Agency. The images are an urban 

area of Toulouse (France) with the size of 1024 × 1024 pixels. 

The resolution of the 4 MS bands is 0.6 meter. The PAN data 

with high-resolution were simulated by the following 

procedure. The red and green channels were averaged, and 

the result was filtered with a system characterized by the 

nominal MTF of the PAN sensor. After the resampling to 0.8 

meter, which adding thermal noise. Finally, inverse filtering 

and wavelet denoising was used to obtain simulated image 

[25].  

2) Kaggle Dstl Satellite Imagery Feature Detection 

Competition Data 

In this competition[56], Dstl provides you with 1000m × 

1000m satellite images in both 3-band and 16-band formats. 

The 3-band images are the traditional RGB natural colour 

images. The 16-band images contain spectral information by 

capturing wider wavelength channels. This multi-band 

imagery is taken from the multispectral (400 – 1040nm) and 

short-wave infrared (SWIR) (1195-2365nm) range.  

3) 2019 IEEE GRSS Data Fusion Contest Data 

In the contest[57], they provide Urban Semantic 3D (US3D) 

data, a large-scale public dataset including multi-view, multi-

band satellite images and ground truth geometric and 

semantic labels for two large cities. The US3D dataset 

includes incidental satellite images, airborne lidar, and 

semantic labels covering approximately 100 square 

kilometres over Jacksonville, Florida and Omaha, Nebraska, 

United States. WorldView-3 panchromatic and 8-band 

visible and near infrared (VNIR) images are provided 

courtesy of Digital Globe. Source data consists of 26 images 

collected between 2014 and 2016 over Jacksonville, Florida, 

and 43 images collected between 2014 and 2015 over Omaha, 

Nebraska, United States. Ground sampling distance (GSD) is 

approximately 35 cm and 1.3 m for panchromatic and VNIR 

images, respectively. VNIR images are all pan-sharpened. 

Satellite images are provided in geographically non-

overlapping tiles, where Airborne LiDAR data and semantic 

labels are projected into the same plane. 

5 Experiments 

5.1 Object Detection Performance 

We evaluated our object detection approach on DOTA 

and compared with YOLO-v2 and YOLO-v3 framework. 

The evaluation images are clipped to 800×800 pixels. The 

evaluation indicators are Precision, Recall, F1-Measure, AP 

(Average Precision) and mAP (mean average precision) 

defined as: 

TP: True Positives 

 FP: False Positives 

   FN: False Negatives 

  TN: True Negatives 

Precision =
TP

TP + FP
(15) 

Recall =
TP

TP + FN
(16) 

F1 − Measure = 2 ×
Precision × Recall

Precision + Recall
(17) 

The area enclosed by P-R curve is the value of AP and 

mAP is the mean value of AP. The results are obtained by the 

evaluation code provided for VOC dataset from GitHub. 

Table 4~7 are Precision, Recall, F1-Measure, AP and mAP 

of YOLO-v2, YOLO-v3 framework and our method in 

horizontal and rotational orientations.  

The test speed of our experiment is in Tabel 8, which is 

obtained on a NVIDIA GeForce GTX 1080Ti GPU. 

Table 4: Precision of YOLO-v2, YOLO-v3 and Our Method. 
Precision 

Classes          

YOLO

-v2 

YOLO

-v3 

horizon of 

our method 

rotation of 

our method 

tennis-court 0.2454 0.2686 0.9447 0.9446 

harbour 0.1293 0.0845 0.7694 0.6977 

bridge 0.0803 0.0122 0.5876 0.5140 

plane 0.3453 0.1752 0.8857 0.9101 

ship 0.2253 0.2054 0.7928 0.6353 

ground-track-field 0.2184 0.0105 0.6447 0.6527 

large-vehicle 0.2003 0.1391 0.7871 0.6765 

helicopter 0.0283 0.0049 0.5000 0.4891 

basketball-court 0.0977 0.0164 0.6193 0.6444 

roundabout 0.1117 0.0433 0.6498 0.6752 

small-vehicle 0.2601 0.1001 0.5795 0.5390 

storage-tank 0.2631 0.2137 0.8213 0.8293 

soccer-ball-field 0.1588 0.0172 0.6000 0.6063 

swimming-pool 0.0062 0.0201 0.5849 0.5654 

baseball-diamond 0.2694 0.0179 0.6964 0.7143 

 

 



Table 5: Recall of YOLO-v2, YOLO-v3 and Our Method. 
Recall 

Classes 

YOLO
-v2 

YOLO
-v3 

horizon of 
our method 

rotation of 
our method 

tennis-court 0.7422 0.7427 0.7603 0.8669 

harbour 0.5761 0.4508 0.6221 0.6166 

bridge 0.3545 0.1377 0.3716 0.3284 

plane 0.6585 0.4256 0.7577 0.8249 

ship 0.6707 0.7492 0.5240 0.5247 

ground-track-field 0.2387 0.1080 0.5653 0.5854 

large-vehicle 0.4116 0.6943 0.4237 0.5052 

helicopter 0.1888 0.0153 0.4745 0.4592 

basketball-court 0.4278 0.1813 0.3824 0.4363 

roundabout 0.6571 0.1918 0.4940 0.5084 

small-vehicle 0.3509 0.8190 0.4669 0.4719 

storage-tank 0.5073 0.2969 0.4593 0.4639 

soccer-ball-field 0.2482 0.1106 0.4054 0.4275 

swimming-pool 0.0091 0.0751 0.5659 0.5527 

baseball-diamond 0.4566 0.1030 0.6626 0.6768 

Table 6: F1-Measure of YOLO-v2, YOLO-v3 and Our Method. 
F1-M 

Classes 

YOLO

-v2 

YOLO

-v3 

horizon of 

our method 

rotation of 

our method 

tennis-court 0.3688 0.3945 0.8425 0.9041 

harbour 0.2112 0.1424 0.6879 0.6547 

bridge 0.1309 0.0223 0.4553 0.4008 

plane 0.4531 0.2482 0.8167 0.8654 

ship 0.3373 0.3224 0.6310 0.5747 

ground-track-field 0.2281 0.0192 0.6024 0.6172 

large-vehicle 0.2694 0.2317 0.5509 0.5784 

helicopter 0.0492 0.0074 0.4869 0.4737 

basketball-court 0.1591 0.0300 0.4729 0.5203 

roundabout 0.1909 0.0706 0.5613 0.5800 

small-vehicle 0.2987 0.1783 0.5171 0.5032 

storage-tank 0.3465 0.2485 0.5891 0.5949 

soccer-ball-field 0.1937 0.0297 0.4839 0.5014 

swimming-pool 0.0074 0.0317 0.5753 0.5590 

baseball-diamond 0.3388 0.0305 0.6791 0.6950 

Table 7: AP and mAP of YOLO-v2, YOLO-v3 and Our Method. 
AP 

Classes 

YOLO

-v2 

YOLO

-v3 

horizon of 

our method 

rotation of 

our method 

tennis-court 0.5498 0.6996 0.7591 0.8590 

harbour 0.3259 0.2297 0.5779 0.5310 

bridge 0.1840 0.1019 0.2874 0.2345 

plane 0.5841 0.3443 0.7502 0.8151 

ship 0.4905 0.5619 0.4918 0.4252 

ground-track-field 0.2004 0.0694 0.4870 0.5051 

large-vehicle 0.2241 0.4181 0.3941 0.3985 

helicopter 0.1591 0.0182 0.4208 0.3757 

basketball-court 0.2817 0.1483 0.3416 0.3830 

roundabout 0.4416 0.0492 0.4446 0.4586 

small-vehicle 0.2235 0.3535 0.3643 0.3466 

storage-tank 0.4113 0.2002 0.4453 0.4511 

soccer-ball-field 0.2150 0.0937 0.3534 0.3751 

swimming-pool 0.0007 0.0027 0.4551 0.4416 

baseball-diamond 0.3250 0.0081 0.5943 0.6199 

mAP 0.3078 0.2199 0.4778 0.4813 

Table 8: Speed of YOLO-v2, YOLO-v3 and Our Method. 
 YOLO-v2 YOLO-v3 our method 

Speed (fps) 25.8771 5.9878 17.5131 

From the tables above, we can easily draw a conclusion 

that our object framework performs better on satellite 

imagery than YOLO-v2 and YOLO-v3. It achieved 

competitive results of Precision, Recall, F1-Measure and AP, 

the mAP of our method is 17.4% higher than that of YOLO-

v2, and 26.1% higher than that of YOLO-v3. The model we 

used performed extremely well on helicopters, ports and 

swimming pools.  

  
  

 

 

 
Fig.3 Some detection results of our CNN framework on DOTA 

dataset. 

Our approach can detect arbitrary-oriented small objects 

on DOTA dataset demonstrated in Figure 3. Even if the 

image resolution is as high as 3000×4000, small objects 

with only15 pixels can be detected. 

5.2 Image Fusion Results 

Three datasets mentioned in 4.2 are utilized to evaluate 

the results of image fusion method mentioned in Section 3.2. 

The results of Kaggle Dstl Satellite Imagery Feature 

Detection Competition Data are shown in Figure 4. (a) is 

PAN image and (b) is MS image with 16 bands, the fusion 

method of (c) (d) (e) (f) belong to CS families and others 

belong to MRA families. From the results of our image fusion 

experiment, we draw a conclusion that CS methods have a 

higher spectral distortion but the final products have better 

visual appearance, while MRA methods have a higher spatial 

distortion, but the spectral consistency is better. 

 



  

   
(a) PAN (b) MS (c) BDSD 

   
(d) GS (e) PCA (f)PRACS 

   

(g) HPF (h) MTF 
(i) 

MTF_GLP_HPM 

   

(j) Indusion (k) MTF_GLP_CBD 
(l) 

MTF_GLP_HPM_PP 

 
(m) SFIM 

Fig.4 The fusion results of Kaggle Dstl Satellite Imagery Feature 

Detection Competition Data. 

5.3 Fusion Object Detection Performance 

We utilize PAN image, MS image and the images fused 

by the methods have mentioned as the CNN object detection 

framework’s inputs, and statistics results on three datasets. 

We use the number of detected objects to evaluate the 

experiment performance showed in Table9.  

We utilize 15 images from the three datasets. It is obvious 

that the number of objects detected by fused images is much 

more than that of PAN and MS images. And some detected 

objects in low resolution MS images and single band PAN 

images are not true objects as Figure 5. None object is 

detected in MS image, 3 objects are detected in PAN image 

and 10 objects are detected in fused image by 

MTF_GLP_HPM_PP method. The performance of object 

detection task on satellite imagery has improved obviously 

through proposed fusion object detection method. 

Table 9: The Number of Detected Objects. 
method number of detected objects 

PAN 13 

MS 5 

BDSD 85 

GS 21 

PCA 37 

PRACS 145 

HPF 85 

MTF 114 

MTF_GLP_HPM 111 

MTF_GLP_HPM_PP 98 

MTF_GLP_CBD 108 

Indusion 120 

SFIM 82 

 

   

MS PAN MTF_GLP_HPM_PP 

Fig.5 The detection performance on MS, PAN and 

MTF_GLP_HPM_PP images. 

6 Conclusion 

Object detection algorithm has been developed rapidly 

and made great strides in the past few years since the 

popularity of CNN. But it is not easy to transfer this 

technology to satellite images. A fusion object detection 

scheme with convolutional neural network we proposed in 

this paper. Experimental results showed that the object 

detection method performs better than YOLO-v2, YOLO-v3 

frameworks on satellite imagery in Precision, Recall and 

mAP, etc. And the proposed fusion object detection method 

has a significant improvement over object detection method 

with single image. The efficiency of multi-model image 

fusion on object detection task has been proved in this paper. 

Next, we will try to utilize the fused images as the training 

set of the detection scheme and verify the efficiency. 
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