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Abstract Satellite image classification plays an impor-

tant role in many fields. It can be divided into two

groups: supervised and unsupervised classification. The

former requires a large number of labeled data, while

in practice satellite images usually lack of sufficient

ones. How to achieve high accuracy on unsupervised

satellite image classification is a key problem. For tack-

ling this problem, based on the idea of partial transfer

learning, we propose an end-to-end unsupervised clas-

sification method novel coordinate partial adversarial

domain adaptation (CPADA) for satellite images clas-

sification. Under the aid of a novel coordinate loss, our

framework transfers relevant examples in the shared

classes to promote performance, and ignore irrelevant

ones in the specific classes to mitigate negative trans-

fer. Experiments show that our CPADA exceeds state-

of-the-art results for unsupervised satellite image clas-

sification task.
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Figure 1: Architecture of our method

1 Introduction

Satellite image classification plays an important role

in many fields, such as characteristics of the drawing,

land cover classification, 3D modeling and change de-

tection. Image classification is also a prerequisite for

understanding and analyzing relevant information.

Inspired by rapid development of deep learning meth-

ods, image classification accuracy has got a huge promo-

tion. However, deep learning approaches rely on large-

scale labelled data, which is also a limitation for deep

learning ones applying to many real-world applications.

For satellite image classification issues, this problem is

particularly essential and changeable. Thus, how to ef-

fectively use the limited image information has become

a research hot spot.

Supervised or unsupervised classification techniques

exist in the literature to deal with satellite image clas-

sification issues [1]. For former approaches, under the

aid of deep learning methods, we can promote accuracy

to a satisfactory level. However, in satellite image clas-

sification issue, we do not have plenty of labeled data,
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making it hard for supervised learning to practical ap-

plications. A much more realistic approach is using un-

supervised image classification approaches. The gener-

ally used unsupervised methods.Unsupervised classifi-

cation methods need to determine the probability dis-

tribution of data compliance, then analyze and judge

preliminary results, so as to obtain better classification

accuracy. However, these kinds of classification meth-

ods have a high computational cost, what’s more, they

only indicate distribution of the data while the labels

are not clear.

Transfer learning is a new risen of unsupervised im-

age classification methods. It focuses on utilizing the

model learned from labelled source domain to tasks on

unlabeled target domain. We take advantage of transfer

learning to tackle the problem of label-lacking for un-

supervised satellite image classification.The commonly

used satellite image datasets usually include over dozens

of categories while in actual situation, we do not need

to classify all the categories in dataset. If we apply the

standard domain adaptation to unsupervised satellite

image classification issues,the source label space does

not equal to target label space, so it is too hard to

satisfy the basic assumption.these classes belonging to

source domain but not target domain may cause nega-

tive transfer.

For dealing with this problem, we introduce partial

domain adaptation to unsupervised satellite image clas-

sification issues,the architecture of our method is shown

in Figure 1. The framework includes two part: the ad-

versarial part and the classifiication part.The adversar-

ial process is a two-player minimax games. The first

is feature extractor Gf ,which tries to learn domain-

invariant features from source and target domain, and

the second is domain discriminator Gd which tries to

distinguish the domains. The source classifier is trained

by minimizing the cross-entropy loss Ly.we put forward

a novel coordinate loss. Its main effect is to promote

weights of shared classes up to almost 1,and decrease

the outlier classes weights down to 0,so as to improve

classification ability. Finally, we use the actual satellite

image datasets, and compare our algorithm with exist-

ing mainstream learning and partial domain adaptation

methods, the experimental results shows that CPADA

reaches the state-of-the-art result and suitable on satel-

lite image classification problem.

2 Related Work

In this section, we briefly review related works of satel-

lite image classification and domain adaptation,one of

the main methods of transfer learning.

2.1 Satellite image classification methods

Most of the satellite image classification methods focus

on feature extraction.There are two kinds of methods to

extract features including hand-craft feature extracting

methods and feature learning methods.

Formal methods aim to extract features artificially

designed. [3] [4] try to utilize a Bayesian framework

to reduce the gap between low-level features and high-

level features. [2] first extracts object specific features

by using a modified cloud basis function neural network,

then a relax labeling process assisting to get classified

images. Above two methods aim to model the satellite

image with a bottom-up scheme while the bottom fea-

tures are still designed by researchers. [5] [11] extract

low-dimension features and cluster into different cate-

gories, then the features from input images are mapped

to its closest label. Even if these methods perform bet-

ter than previous ones, they use various hand-craft local

image descriptors to represent aerial scenes, and may

lack the flexibility to different scenes.

Feature learning methods try to learn a high-level

representation from input data.they can be categorized

into two kinds: the first method tries to learn a scene

representation from the unlabeled input data. [12] and

[14] utilize a unsupervised method to generate a sparse

feature representation.[20] presents an improved unsu-

pervised feature learning method, which can not only

learn a good global representation, but it can also find

out intrinsic structures of local image patches.

Another method is deep learning method. Deep learn-

ing has been applied to many fields and shown as-

tounding results. This kind of ways is also applied to

satellite image classification.[17] finetunes Google-Net
on the target dataset and achieves good performance.

[6] takes advantage of CaffeNet to obtain high-level fea-

tures, then classify these features from target images

with a SVM classifier.

All the methods in [12] [14] [17] [20] and [6] can learn

features automatically. But the unsupervised methods

spend a lot of time on training while the classify ac-

curacy is not good. And deep learning methods need

efficient labeled data, which is hard to satisfy.

2.2 Domain adaptation and partial domain adaptation

Transfer learning focuses on freeing deep learning from

plenty of labelled data. Domain adaptation plays an

important role in transfer learning. Domain adaptation

tries to narrow the gap between source and target do-

main while it can learn domain-invariant features across

domains to assist task on target domain perform well.
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It has been applied to many fields such as computer vi-

sion, natural language processing and machine learning.

A large number of domain adaptation methods have

been proposed to deal with label-lacking issues. They

mainly focus on closing high-order statistics features

and minimax game processing. [22], [9] and [10] aim for

adding adaptation layers to match high-order statis-

tics of distribution. Once the high-order features are

matched, the gap between source and target domains

are eliminated. [8] [21] and [19] try to use a feature ex-

tractor to obtain domain-invariant features, discrimina-

tor tries to distinguish which domain the feature comes

from. Based on this minimax game processing between

feature extractor and discriminator, the framework can

perform well on target domain with support from source

domain.

Partial domain adaptation is a promotion of stan-

dard domain adaptation. In standard domain adapta-

tion, a basic assumption is that source and target do-

main share the identical label space. But in partial do-

main adaptation, this assumption has been relaxed to

source label space contains target one. This new as-

sumption makes it much easier to apply partial domain

adaptation to real world application compared with

standard domain adaptation. There are three methods

[13] [15] [16] dealing with partial domain adaptation is-

sues by down-weighting outlier classes and up-weighting

shared classes.

3 Coordinate Partial Adversarial Domain

Adaptation

Based on present partial domain adaptation methods,

we present a novel coordinate partial adversarial do-

main adaptation (CPADA) to deal with unsupervised

satellite image classification issue. It is the first time to

apply partial domain adaptation methods to satellite

image classification issue.

In partial domain adaptation setting, source domain

is Ds = (xsi , y
s
i )representing each source sample with

a label, while in target domain Dt = (xti)representing

each target sample without label. When it comes to our

satellite image classification issue, the source domain is

a satellite image dataset with labeled data while the

target domain is a satellite image dataset without label,

the target label space is a subset of source label space.

3.1 Domain adaptation neural network

For narrowing the distance between source and target

domain, our work bases on Domain Adversarial Neu-

ral Network (DaNN) [8], in which this problem tackled

by a two-player minimax processing. The first is fea-

ture extractor Gf to learn domain-invariant features

from source and target domains, and the second is do-

main discriminator Gd to distinguish the domains. The

source classifier Gy is trained by minimizing the cross-

entropy loss Ly. The Gy and Gd can be learned as fol-

low:

minL(Gd, Gf , Gy) =
1

ns

ns∑
i=1

Ly(Gy(Gf (xsi )), y
s
i )

− 1

ns

ns∑
i=1

[logGd(Gf (xsi ))]

− 1

nt

nt∑
i=1

[log(1−Gd(Gf (xti)))]

(1)

3.2 Shared-class weights

the classes belonging to both source and target domains

are defined as shared classes, while the classes only be-

longing to source domain as outlier classes. Source clas-

sifier Gy is trained on source domain. The output of this

classifier is a |Cs|-dimension vector, Cs is the number of

source classes. Each element represents the possibility

of the input sample belonging to the jth class. A basic

assumption is that the difference between source outlier

label space and target label space should significantly

more obvious than the difference between source shared

label space and target label space,even if the target la-

bel space disjoints with source label space, Thus, we

utilize output of Gy for target samples to evaluate the

possibility of the source images belonging to target la-

bel space. It is can be defined as shard-class weight wc,

which is described as follows:

wc =
1

nt

nt∑
i=1

Gy(Gf (xti)) (2)

What’s more,wc is normalized by dividing its largest

element to eliminate the influence of extremum. Hence,

the objective of our framework is as follow:

minL(Gd, Gf , Gy) =
1

ns

ns∑
i=1

wcLy(Gy(Gf (xsi )), y
s
i )

− 1

ns

ns∑
i=1

wc[logGd(Gf (xsi ))]

− 1

nt

nt∑
i=1

[log(1−Gd(Gf (xti)))]

(3)

Compared with DaNN, this new framework adds a shared-

class weight wc on the source classifier Gy and domain
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discriminator Gd when it works in source domain. This

new measure can reduce negative transfer caused by

outlier source classes while extract domain-invariant

features from shared source and target space.

3.3 Limitation of present methods

Shared-class weight wc is presented to down-weight out-

lier classes while up-weight shared classes. As shown in

3.2, each element in wc represents the possibility of the

input satellite image belonging to the jth class. In ideal

situation, the element subjecting to correct class should

be as high as possible while the other (not matching)

should be very low. The training processing aims to

minimize the cross-entropy of the source satellite sam-

ples and applies this trained distribution to the target

domain. However, during the training processing, the

lower score values for the elements of the vector are not

penalized. This phenomenon may cause relavant low

score values for the correct satellite image classes during

inference. In supervised learning processing, this phe-

nomenon may not cause bad outcome because as long

as the correct class get the highest scores. However,

when it comes to wc, which aims to evaluate whether

a class subject to outlier classes, this behavior causes

a problem that having low scores for the positive class

will result in false negatives.

Meanwhile, as long as the correct class produces the

highest value, the cross-entropy loss does not penalize

values of unrelated classes. As a result, even if weights

of shared classes are obviously higher than those of

outlier classes, few of them can achieve desired val-

ues. Inaccurate cross-class relationships are encouraged

during training. The deviation between predicted and

ideal weights may misalign the features of outlier source

classes and target classes. Hence, it is necessary to force

the weights in shared classes close to 1, while the weights

in outlier classes almost to 0 to wipe out negative trans-

fer.

3.4 Coordinate loss

In our approach, we present a novel coordinate loss to

deal with the above limitation we mentioned. The basic

assumption of our method is that if we identify the sam-

ple belongs to a class, the element of this corresponding

class in wc should be 1 otherwise should be 0.

Because wc is gained from the source classifier, the

more reasonable the output of the source classifier is,

the more reasonable the wc is. Hence, we plan to utilize

the coordinate loss Lc to force only the most possible

class get an obvious high weight while others are close

to 0.

We interpret each transformed activation score as

the probability of the input image belonging to each

individual class. In source domain, we have a ground

truth label. And the output of the source classifier is

a |Cs|-dimension vector, Cs is the number of source

classes. Each element represents the possibility of the

input sample belonging to the jth class. The network

learns possibilities for the membership of each class as

follow:

P (y = i) = Gy(Gf (xti))(y = i) iε(1, 2, · · · c) (4)

We define the possibility of the correct class as Rc and

the possibility of the wrong class as Rw. In this way,

coordinate loss as the risk of classification is defined as

Lc = Rc + α ∗Rw (5)

α is a trade-off parameter.

In our formulation, we hope the possibility of the

correct class should be as high as possible, Thus, we

define Rc as follow:

Rc =

n∑
i=1

c∑
s=0

(1− P (y = s))2

=

n∑
i=1

c∑
s=0

(1−Gy(Gf (xti))(y = s))2
(6)

By minimizing Rc, the possibility of the correct class

can be forced to be high. Meanwhile, we hope the weights

of the incorrect classes should be as low as possible.

Hence, similar to Rc, Rw can be defined as:

Rw =
1

(C − 1)
(P (y 6= s))2

=
1

(C − 1)

n∑
i=1

c∑
s=0

((Gy(Gf (xti))(y 6= s))2
(7)

By substitution, coordinate loss is presented as fol-

low:

Lc =

n∑
i=1

c∑
s=0

(1−Gy(Gf (xti))(y = s))2

+α ∗ 1

(C − 1)

n∑
i=1

c∑
s=0

((Gy(Gf (xti))(y 6= s))2
(8)
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Then, the final objective of CPADA is defined as:

minL(Gd, Gf , Gy)

=
1

ns

ns∑
i=1

wcLy(Gy(Gf (xsi )), y
s
i )

− 1

ns

ns∑
i=1

wc[logGd(Gf (xsi ))]

− 1

nt

nt∑
i=1

[log(1−Gd(Gf (xti)))]

+

n∑
i=1

c∑
s=0

(1−Gy(Gf (xti))(y = s))2

+ α ∗ 1

(C − 1)

n∑
i=1

c∑
s=0

((Gy(Gf (xti))(y 6= s))2

(9)

After adding the coordinate loss, only one element of

the source classifier close to 1 while others are close to

0. When this classifier is utilized to evaluate wc, tar-

get samples that produce small weights will also be pe-

nalized regardless of the weights of the other classes.

Moreover,when the coordinate loss is used together with

cross-entropy loss, as the network is being trained, the

most possible target class gets a relatively higher weight

while others are close to 0.

Hence, when we apply the coordinate loss into our

framework, the weights of shared classes are higher than

these without coordinate loss, while the weights of out-

lier classes are mostly close to 0. This improvement can

effectively eliminate negative transfer.

4 Experiment

We conduct our experiment on two datasets Office-31

dataset and NWPU-Merced-Land satellite image dataset.

Office-31 dataset is utilized to compare our method

with other classical unsupervised domain adaptation

approaches to illustrate the effect of our method. Then,

we apply our algorithm to an unsupervised satellite im-

age classification issue.In this case,NWPU-RESISC-45

satellite image dataset with label is set as source do-

mian, UC Merced Land-19 dataset is a without label is

set as target domian.

4.1 Set up

Office-31 dataset is a standard benchmark dataset for

unsupervised domain adaptation problem. This dataset

includes 4652 images in 31 categories. There are three

domains, named A, W, D, collected from amazon.com

(A), DSLR (D) and web camera (W). we select the ten

Figure 2: Sample images of UC Merced Land dataset

categories belonging to both office-31 and Caltech-256

dataset to build new target domain. In source domain

there are 31 categories while in target domain there are

only 10 categories. We compare the accuracy of several

standard domain adaptation and partial domain adap-

tation methods with ours to evaluate our approach.

NWPU-Merced-Land satellite image dataset includes

two part, NWPU-RESISC-45 satellite image dataset,

which contains 45 common ground object categories

with label, while UC Merced Land-19 dataset contain

19 categories without label. It is worthwhile to notice

that the 19 categories is a subset of NWPU-RESISC45

label space. In this task, we set NWPU-RESISC45 satel-

lite image dataset as source domain and UC Merced

Land-19 dataset as target domain. sample images of

UC Merced Land-19 dataset are shown in Figure 2. Our

purpose is to classify the UC Merced Land satellte im-

ages,we introduce the NWPU-RESISC-45 satellite im-

age dataset to assist us to apply our CPADA.Moreover,we

compare the accuracy of our method to other tradi-

tional unsupervised machine learning methods and deep

learning method to evalute our approach.

4.2 Result

The classification results based on ResNet-50 network

are measured on the six classification tasks on Office-31

dataset and unsupervised satellite image classification

task on NWPU-Merced-Land satellite image dataset

are respectively show in Table 1 and Table 2. It is ob-

vious that CPADA outperform than others in terms of

accuracy, showing that our method performs well on

different benchmark and improves the effect of algo-

rithm in unsupervised satellite image classification is-

sues.
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Table 1.Accuracy of Partial Domain Adaptation Tasks on Office-31 Dataset

Table 2.Accuracy of Unsupervised Satellite Image classification Tasks on
NWPU-RESISC-UC-Merced-Land Satellite Image Dataset

Methods NWPU-RESISC-UC-Merced-Land

ResNet[7] 69.78
DaNN[8] 51.36

PADA[16] 88.74

CPADA 89.96

From the results, we have some insightful obser-

vations. Based on Table 2, we can find out 1) DaNN

performs worse than ResNet, which implies that the

misalignment of domains has a negative transfer on re-

sults.2) RTN applies the entropy minimization criterion

to their classifier, which is helpful to restrain negative

transfer.3) Our scenario is more accurate than previous

partial domain adaptation methods because of novel

coordinate loss Lc.

Table 2 shows the promotion of our method in un-

supervised satellite image classification. 1) ResNet-50

utilizing finetune performs not too bad and the accu-

racy cannot satisfy our need. 2) The standard domain

adaptation method DaNN performs worse than fine-

tuned ResNet-50 because of negative transfer. 3) On

account of negative transfer having been reduced, the

accuracy of PADA has achieved over 88%. 4) CPADA

presents coordinate loss to reduce the influence of out-

lier classes. The accuracy of our method has achieved

almost 90%, which is the state-of-the-art on unsuper-

vised satellite image classification task. 5) if we remove

the coordinate loss, CPADA degrades into PADA, the

comparison between these two methods also shows the

role of coordinate loss.

4.3 Analysis

Classes Weights: Fig. 3(a)-3(c) are weights histograms

of source classes on the unsupervised satellite image

classification task using ResNet-50, DaNN and CPADA.

The blue bins represent shared classes, while the red

ones are outlier classes.

ResNet-50 can give most shared-classes higher weights

owing to the effect of finetune, even if the distinction be-

tween shared classes and outlier classes are not obvious.

DaNN barely classifies outlier weights because of the

negative transfer. Meanwhile, the gap between outlier

and shared is more obvious which is conducive to avoid

negative transfer. Our method can assign much larger

weights to the shared classes while much lower weights

to the outlier ones compared with previous methods.

Feature Visualization: We visualize the t-SNE

embeddings of the bottleneck layer learned by ResNet-

50, DaNN and CPADA on the unsupervised satellite

image classification task in Fig. 4(a)-4(c). From Fig.4(a),the

ResNet can classify some outlier samples but performs

far away from perfect. Fig.4(b) illustrates DaNN can

distinguish source domain samples well while target

samples are mixed to every cluster that they cannot be

discriminated. Compared with above scenarios, CPADA

classifier in Fig.4(c) can classify target samples better,

most samples are aggregated to correct classes. The re-

sult of t-SNE shows that our model can better discrim-
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Figure 3 (a): ResNet-50

Figure 3 (b): DaNN

Figure 3 (c): CPADA
Figure 3:Histograms of class weights learned by ResNet-50, DaNN and

CPADA on unsupervised satellite image classification tasks

Figure 4 (a): ResNet-50

Figure 4 (b): DaNN

Figure 4 (c): CPADA
Figure 4:The t-SNE visualization of ResNet-50, DaNN

and CPADA with domain information



8 Jian Hu et al.

inate both source and target examples than compared

methods.

5 Conclusion

In this paper, we present a novel CPADA for unsuper-

vised satellite image classification issues. Unlike pre-

vious unsupervised satellite image classification meth-

ods, the proposed approach introduces partial trans-

fer learning method into this field,the novel coordinate

loss can eliminate negative transfer by down weight-

ing outlier satellite image classes and promote weights

of shared satellite image classes. On a classical unsu-

pervised satellite image classification task, our method

outperforms 30% compared with traditional machine

learning ones, and also gets the state-of-the-art result

compared with partial transfer learning ones.
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