
Noname manuscript No.
(will be inserted by the editor)

Real-Time Trajectory Generation for a Swarm of Quad-rotor
UAVs using Custom Solver

Min Prasad Adhikari · Anton H. J. de Ruiter

Received: date / Accepted: date

Abstract The problem of real-time trajectory genera-

tion with autonomous obstacle and collision avoidance

for a swarm of quad-rotors is studied in this paper.

In particular, a centralized approach is utilized, and

dynamical and control constraints are accommodated.

The centralized approach has the benefit of utilizing all

available information, in contrast to decentralized ap-

proaches. Therefore the problem has the potentiality to

serve various important applications that demand reli-

ability and safety in a swarm while addressing a quality

task provided a central computer such as a ground sta-

tion is available. However, computational complexity is

one of the challenges that constrain the centralized ap-

proach for swarm scalability. Therefore, we study the

computational aspect of this swarm problem. We con-

sider a scenario for the swarm problem in which mov-
ing targets have been assigned for the swarm to fol-

low along with a reference path for each UAV, where

we solve the scenario in two different cases; the first,

solve the entire swarm problem at once, and the sec-

ond, solve iteratively for UAVs while considering tra-

jectories from other UAVs as fixed. The scenarios de-

fined form nonlinear programming problems, which we

solve using the method of Finite Horizon Model Pre-

dictive Control. We have developed a custom solver for

M. P. Adhikari, Ph.D. Student, Department of Aerospace En-
gineering
Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3
Tel.: +1-437-344-0513
E-mail: minprasad.adhikari@ryerson.ca

A. H. J. de Ruiter, Associate Professor and Canada Research
Chair in Spacecraft Dynamics and Control, Department of
Aerospace Engineering
Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3
E-mail: aderuiter@ryerson.ca

rapidly solving these problems. The comparative study

between the two cases for the scenario indicates, the

second approach of solving the swarm problem is al-

most four to seven times computationally faster than

the first approach. However, this comes with the price

that the found solution may not be completely optimal.

In particular, we are able to achieve a 24.4 and 192.11

milliseconds solution time for a swarm of 6 and 32 quad-

rotors through a cluttered environment respectively.

Keywords Quad-rotor · Quad-rotor Swarm · Custom

Solver · Model Predictive Control

1 Introduction

The flexibility in speed and the complexity in a trajec-

tory offered by a quad-rotor is a motivating factor for

the present study of its swarm application. However,

when compared to a quad-rotor, a swarm has a added

level of complexity associated with its size; that is com-

putability. Moreover, for a swarm of quad-rotors there

may arise an application dependent complexity besides

the above. As a model for a quad-rotor is a common be-

tween a swarm and a quad-rotor problem, we see that

a choice of the UAV model plays a significant role in

scalability of a swarm. In [1], the authors have used

a simplified model of quadcopter for trajectory genera-

tion, which shows a low computation time. However, an

intensity of computability increases in a swarm when an

individual trajectory has to be generated in contrast to

a swarm problem with a leader-follower mode [2]. Thus,

real-time generation of trajectory for a large swarm of

quad-rotors is still the topic of ongoing research.

In literatures we find various aspects of swarm prob-

lems being studied. Honig et al. used an approach that

consists of three steps (road map generation, discrete

2 Min Prasad Adhikari, Anton H. J. de Ruiter

planning, and continuous refinement to smooth trajec-

tory) for trajectory planning for quad-rotor swarm [3],

however, it has no concern with real-time computation

as it is a trajectory planning. The paper used a se-

quential convex programming (SCP) approach to con-

vert a discrete plans from discrete planning steps to

smooth trajectories. Although, the reference is yet to

investigate the method for operating in an online gen-

eration and implementation settings, paper argues that

the method is suitable for scaling the number of UAVs

in a swarm. Kushleyev et al. studied the trajectory gen-

eration and collision avoidance in a swarm with agile

micro quad-rotors [4]. The reference presents a forma-

tion flying where quad-rotors follow a trajectory gen-

erated offline, using mixed-integer quadratic program

method to solve the problem. In [5], Luis et al. studied

the offline trajectory generation method for a swarm

using Distributed Model Predictive Control and argues

the advantage against SCP method in terms of compu-

tation time. This is straight forward as the increasing

number of UAVs in a swarm also increases the over-

all state and control variables (optimization variables)

which in turn increase the size of an SCP problem. A

mitigating approach to such scaled SCP has been pro-

posed by [6] where the SCP problem for a swarm is

decoupled per UAV in a swarm while considering other

UAVs as obstacles. Thus, using the approach a trajec-

tory is generated iteratively for a UAV at a time in

a swarm. Although the reference presents a hardware

test with four quad-rotors in their testbed, the com-

putability of the approach for a swarm of quad-rotor

remains unexplored as solution time are not provided.

The approach uses model predictive control (MPC) and

limited horizon SCP (associated with the MPC). In [7]

Park et al. presented a case study of distributed for-

mation flying where a central computer computes tra-

jectory for all the UAVs, however, the solution time is

not discussed. Similarly, in [8] Preiss et al. presented

a study on control of a swarm of quad-rotor UAVs

in a laboratory environment, where a combination of

trajectory planning and online trajectory is been im-

plemented, but does not discuss the computability of

the problem. From the literature we understand that

none of the citations mentioned above have explored

the use of custom solver for a swarm application of

quad-rotors, besides [3] which has used the CVXGEN

[9] to address a small segment of a swarm problem that

solves a support-vector machine problems to find safe

corridors for the swarm application.

In order to present our approach for a swarm ap-

plication, we define a swarm problem for quad-rotors

as follows. Given an initial point for each quad-rotors

in a swarm, the aim of the swarm is to minimize the

distance to moving targets in an obstacle-rich environ-

ment such that all the UAVs have its own reference

path to remain close to while satisfying their state and

control bounds, including collision among themselves

and avoiding obstacles with robustness. In addition we

form two cases for the swarm problem. In the first case

the entire swarm problem is solved at once, while in the

second case the problem is solved iteratively for UAVs

while considering trajectories from other UAVs as fixed.

In the present study we aim to investigate the compu-

tational complexity associated with the swarm applica-

tion. Also, to constrain ourselves from the broad topic

of trajectory generation for a swarm of quad-rotors, we

will only investigate the method of trajectory genera-

tion using the central controller approach. The central

controller is a central computational system that com-

putes trajectory for all the UAVs in a swarm rather

than the trajectories being generated locally onboard

each quad-rotor. One main assumption of using the

central controller is the knowledge of the position of

all the UAVs in a swarm. In this approach, the central

controller generates collision-free trajectories for all the

UAVs where the controller acts as a high level trajec-

tory planner, and the respective UAV tracks the given

trajectory. In the present study, a dynamic and a kine-

matic model for a quad-rotor are defined, where with

certain assumptions the solution from the problem with

kinematic model is used to compute inputs to the dy-

namic model so that we can realize a trajectory by in-

tegrating the inputs to the dynamic model. Although

a slight different expression to compute the inputs to

the dynamic model appeared in [10], it had the pur-

pose of computing commanded roll, pitch and thrust

for trajectory tracking, while in this paper we use a

reduced form of expressions to retrieve inputs to the

dynamic model from the kinematic counterpart. Thus,

with an approximate computational complexity associ-

ated with the kinematic model we get the inputs for

the quad-rotor dynamic model. We solve the above de-

fined problems in a model predictive control (MPC)

framework [11], with the same constraints and the cost

function as in the original problem, where we use a

sequential quadratic programming (SQP) approach as

outlined in [12]. The increase in the number of quad-

rotors in a swarm increases the problem size which even-

tually makes the computability of the swarm problem

questionable for real-time applications. Hence, to lower

the computation time as needed in real-time trajectory

generation for a swarm of quad-rotors we use a custom

solver(developed by the authors) that avoids unneces-

sary computations with zero and has the least possible

memory requirement.

Real-Time Trajectory Generation for a Swarm of Quad-rotor UAVs using Custom Solver 3

This paper is arranged in the following order. Sec-

tion 2 presents problem formulations for swarm of quad-

rotors that consist of simplification to a dynamic model

for a quad-rotor UAV. Section 3 summarizes the ap-

proach used to solve the problems. The numerical ex-

amples are presented in Section 4 where we perform a

comparable numerical study between the defined two

problem formulations, and a Monte-Carlo test for the

latter formulation including its scalability study. Fi-

nally, Section 5 concludes the paper.

2 Problem Formulation

2.1 Quad-rotor System Equations

2.1.1 A reduced dynamic model

As suggested by Feldman [13], a point mass model is the

most detail model needed for a flight performance prob-

lem, as the motion of a vehicle is of interest. And, for

our study of trajectory generation for a swarm of quad-

rotors, we focus on their motion, irrespective of their

heading angle. Thus, in order to work with a simple

system equation for quad-rotor we reduce the complex-

ity of a dynamic model for a quad-rotor UAV used for

simulations in [14] by eliminating the need for heading

angle. Also, for the problem of trajectory generation an

absence of heading angle does not constraint a nature

of flight trajectory a quad-rotor could take in 3D space,

while pitch and roll angles are available. As such, we see

Hehn et al. in [1] have suggested to set the rotational

rates along z−axis to be zero in order to compute con-

trols for their model. Thus, conceivably for the purpose

of trajectory generation we do not limit the position

in space where a quad-rotor could reach by setting the

heading angle (ψ) and its time derivatives to be zero.

Therefore, we make the following assumptions,

– Assumptions: 1. ψ = 0, 2. ψ̇ = 0, and 3. ψ̈ = 0.

Then using the assumptions, the reduced model for a

quad-rotor becomes,
ẍ

ÿ

z̈

φ̈

θ̈

 =


cos(φ) sin(θ) TM −

1
M kdxẋ

− sin(φ) TM −
1
M kdy ẏ

−g + cos(φ) cos(θ) TM −
1
M kdz ż

τφ
Ix
τθ
Iy

 (1)

where (x, y, z) represents the position of a quad-rotor

in three dimensional space. Euler angles (φ, θ) represent

the angle of rotation about the x, and y axes respec-

tively in an inertial frame in the anti-clockwise direc-

tion. T represents the total thrust due to four motors

in a quad-rotor, where T = FF + FR + FB + FL =

k
∑4
i=1 ω

2
i . FF , FB , FR, FL represents force due to mo-

tors as shown in Figure 1, k is a force constant and ωi
refers to the angular velocity of motor i. kdx , kdy and kdz
represent aerodynamic drag constants due to velocity

along the x, y and z axes respectively. τφ, and τθ are the

torques about each rotational axis due to thrust from

the propellers, where τφ = L (FL − FR) = Lk(ω2
1−ω2

3),

and τθ = L(FF − FB) = Lk(ω2
2 − ω2

4). L is half the

distance between two opposite rotors, M is mass of the

quadcopter and b is the drag constant due to propeller,

shown in Figure 1. The moments of inertia of the quad-

copter about each respective axis are represented by

Ix, Iy. Let us represent the states and the controls for

the quad-rotor dynamic model by X = [x, y, z, φ, θ]
T

and U = [ω1, ω2, ω3, ω4]
T

respectively. Since the motors

in a quad-rotor have a saturation point in the angular

velocity, we define a limitation in thrust as, T ≤ Tmax
where Tmax > 0. From this reduced model for a quad-

rotor we see a possibility to further simplify a system

equation for the UAV, where we could work with a kine-

matic model for the quad-rotor and still constraint the

thrust produced by motors.

IMU

Front

Back

RightLeft

CW

CCW

CW

CCW τR

τB

τF

τL

FR

FB

FF

FL

positive roll φ

+ve pitch θ

+ve yaw ψ

x axis

y axis

x axis

y axis
z axis

length=L

length=L

Fig. 1 Quad-rotor Model

2.1.2 A kinematic model

Let us define a kinematic model for a quad-rotor UAV

as follows,

ẋ

v̇x
ẏ

v̇y
ż

v̇z

 =



vx
ax
vy
ay
vz
az

 (2)

4 Min Prasad Adhikari, Anton H. J. de Ruiter

where x, y, z are positions in 3D space, vx, vy, vz are

velocities and ax, ay, az are accelerations along each

axes x, y, z respectively. For the kinematic model, Xk =

[x, vx, y, vy, z, vz]
T

, and Uk = [ax, ay, az]
T

represent state

and control variables respectively.

Now, in order to get a thrust constraint for (2), we

do the following assumptions. Since, ẍ in (1) and ax
in (2) both represent acceleration and ẋ and vx both

represent velocity along x − axis we assume ẍ = ax,

and ẋ = vx. Similarly, along the y and z-axes we assume

ÿ = ay, z̈ = az and ẏ = vy, ż = vz. Then, using these

assumptions we define the following,

Ax = ẍ+
1

M
kdxẋ = ax +

1

M
kdxvx (3a)

Ay = ÿ +
1

M
kdy ẏ = ay +

1

M
kdyvy (3b)

Az = z̈ +
1

M
kdz ż = az +

1

M
kdzvz (3c)

Re-arranging the first three equations of (1) and then

simplifying them using the expressions in (3) we get the

following.

Ax = cos(φ) sin(θ)
T

M
(4a)

Ay = − sin(φ)
T

M
(4b)

Az + g = cos(φ) cos(θ)
T

M
(4c)

Now, to calculate the total thrust we square both the

sides of equations in (4) and add them together. After

simplification we obtain,

T = M
√
A2
x +A2

y + (Az + g)
2

(5)

Then, we write the thrust constraint for (2) as,

M
√
A2
x +A2

y + (Az + g)
2 ≤ Tmax (6)

Hence, once we solve a trajectory generation problem

using the kinematic model, we use its solution (state

and control inputs) to compute the control inputs for

the reduced dynamic model using similar expressions

from [10] but with simplifications for our reduced dy-

namics case. Thus computed inputs are then integrated

into the system dynamics used in [14], using Runge-

Kutta integration, to realize a trajectory.

2.2 Obstacle Avoidance Constraint

In order to address a trajectory generation problem in

an obstacle-rich environment, we include the obstacle

avoidance constraint as in [15],

hi(x, y, z) = ln
[∣∣∣(x−x{c,i}ai

)pxi ∣∣∣+
∣∣∣(y−y{c,i}bi

)pyi ∣∣∣
+
∣∣∣(z−z{c,i}ci

)pzi ∣∣∣] ≥ εs (7)

where x{c,i}, y{c,i}, z{c,i} represent the centre of an ob-

stacle i in three-dimensional spatial coordinates for i =

1, ..., p, where p is the number of obstacles, pxi , pyi , pzi ≥
2 are exponent terms for the x, y and z components re-

spectively, and ai, bi, ci represent the radius to an ob-

stacle from its centre along x, y, z axes respectively. The

constant εs > 0 is used to ensure that the feasible region

for the UAV is closed.

In order to ensure a UAV’s safety from an obstacle

and to increase the robustness in obstacle avoidance, a

robustness function is augmented to the cost of a trajec-

tory generation problem to be defined next, introduced

in [16] but with the further modification we write as

follows,

r(X(·)) =

p∑
i=1

wi (x, y, z) ee
(εs−hi(x,y,z)) − 1 (8)

where w is a weighting factor also known as robustness

factor and it given by,

wi (x, y, z) = q · g
(∣∣∣(x−x{c,i}ai

)∣∣∣pxi +
∣∣∣(y−y{c,i}bi

)∣∣∣pyi
+
∣∣∣(z−z{c,i}ci

)∣∣∣pzi)
(9)

hi(x, y, z) = ln

[(
x−x{c,i}

ri

)2
+
(
y−y{c,i}

ri

)2
+
(
z−z{c,i}

ri

)2] (10)

where ri = max(ai, bi, ci), and hi defines expression re-

lated a sphere with radius equal to the maximum radial

dimension of an obstacle. In equation (9) q > 0, and g(·)
is defined as,

g(t) =
f (rb − t)

f (rb − t) + f (t− ra)
(11)

for suitably chosen ra < rb, t ∈ (−∞,∞), and f(t) is

defined as,

f(t) =

{
0 t ∈ (−∞, 0]

exp (−1/t) , t ∈ (0,∞)
(12)

This function is C∞, and its derivative is given by

df(t)/dt =

{
0 t ∈ (−∞, 0](
1/t2

)
exp (−1/t) , t ∈ (0,∞)

(13)

We get g(t) = 1 for t ≤ ra, and g(t) = 0 for t ≥ rb. Since

for t < 1 corresponds to points inside an obstacle, we

require 1 < ra < rb, to ensure the weight is non-zero in

a region outside the obstacle.

Real-Time Trajectory Generation for a Swarm of Quad-rotor UAVs using Custom Solver 5

2.3 Collision avoidance constraint

In order to avoid collision among quad-rotors, we use

the collision avoidance constraint for a swarm as in [17],∥∥∥∥∥∥
xk − xjyk − yj
zk − zj

∥∥∥∥∥∥ ≥ RCA, ∀k 6= j (14)

where k and j refer to two different UAVs in a swarm,

and RCA is the radius of collision avoidance which also

represents the centre distance between two UAVs.

2.4 Swarm problems with moving targets

We now introduce swarm problem of our interest. Given

initial points for a swarm of quad-rotor we focus on the

trajectory generation problem where each quad-rotor

has a reference path to remain close to while all the

quad-rotors in the swarm aim to reach their respective

moving targets by avoiding collision among themselves

and maneuvering around obstacles with robustness, and

satisfying state and control constraints. However, the

moving target in our problem is not like a definitive

goal point that forms an equality constraint to repre-

sent the end-point constraint. Instead, it forms the cost

to minimize the distance to a target plane (for exam-

ple, x = 300, can represent a target plane at 300 meters

along x− axis), which up on intersection with a refer-

ence path (for example, y = 20 and z = 20 can repre-

sent a reference path) forms a target point. The purpose

of the cost function is to drive/fly quad-rotors along the

desired direction, rather than a hard constraint as the

end-point constraint.

One significant advantage of replacing a definitive

goal point with the cost is, even if there is an obstacle

at a target point the problem still becomes end-point

feasible. For example, let us suppose a swarm of quad-

rotor has to reach an imaginary moving target point

in an obstacle-rich environment, and the moving target

passes through multiple obstacles. To deal with such

a scenario, to be able to fly the swarm safely, avoid-

ing obstacles and remain close to the target point, we

use the cost but not the end-point equality constraint.

Alternatively, for such a scenario we may think of an

end-point inequality constraint, such that the problem

becomes end-point feasible if the inequality in the prob-

lem is satisfied when a quad-rotor in a swarm reaches

near the target radius (suppose the target point lies

inside an obstacle). However, we cannot define a gen-

eral inequality constraint that can accommodate all the

unknown obstacles in various scenarios. The problem

as well serves applications that has a target point far

enough or may not be reachable. Such as, a swarm chas-

ing a suspect in city like environment, or a swarm flying

to a destination for aerial cover; where the destination

is a stationary target.

Figure 2 shows a representation for this type of sce-

nario where two quad-rotors aim to reach their respec-

tive moving target point along their reference path to-

wards the desired direction of flight. As shown in the

figure, both the reference path pass through obstacles

along which the target point moves. Such scenario is

best suited when quad-rotors in a swarm are required

to progress equally in a desired direction if moving tar-

gets have the same velocity lower than the UAVs ve-

locity (when obstacles are absent or after avoidance of

obstacles). As stated in the introduction, we study the

Obstacles
Quadrotors initial point

Moving targets Reference path

Fig. 2 Swarm problem with moving targets

swarm problem in two cases. In the first case, we de-

fine a problem that solves for the entire swarm at once.

Whereas, in the second case we iteratively solve for an

agent at a time while considering the trajectories for

other UAVs as fixed.

2.4.1 Case A: solve the entire swarm problem at once.

Let us suppose there are Ns number of quad-rotors in a

swarm. Let
(
Xj , U j

)
represents the state–control pair

for a jth quad-rotor in the swarm. Let yj (t) and zj (t)

represent the position of a jth quad-rotor along y and z

axes at time t, and let yj (t) = yjd and zj (t) = zjd are two

planes representing a desired path for the quad-rotor,

where yjd and zjd are constants. Also, let us define

Xj
m (t) =

[
x (t)

j
m , ẋ (t)

j
m , y (t)

j
m , ẏ (t)

j
m , z (t)

j
m , ż (t)

j
m

]T
as the state of a moving target at time t associated with

a quad-rotor j. We also define a term that represents

the rate of change of the control for jth quad-rotor in a

swarm as, U̇ j (·). Then, we define the cost function to

the trajectory generation problem for a swarm of quad-

rotors with their respective moving target points to

avoid collision and obstacles, and remain close to their

respective reference path while flying from (xj0, y
j
0, z

j
0)

at time τ0, up to final time τf as,

J(X (·) , U (·)) =

Ns∑
j=1

[∫ τf

τ0

F
(
Xj (t) , U j (t) , t

)
dt

]
(15)

6 Min Prasad Adhikari, Anton H. J. de Ruiter

where X = [X1T , ..., XNsT]T , U = [U1T , ..., UNsT]T ,

and j = 1, 2, ..., Ns.

F
(
Xj (t) , U j (t) , t

)
=

α
(
yj(t)− yjd

)2
+

β
(
zj(t)− zjd

)2
+ η

(
Xj (t)−Xj

m (t)
)2

+

r
(
Xj (·)

)
+ ζ

(
U̇ j (t)

)2


(16)

where the term
(
yj(t)− yjd

)2
in the cost function mini-

mizes the square of deviation from the plane yj (t) = yjd,

and α > 0 is the penalty term associated with the term.

Similarly, β > 0 is the penalty term associated with(
zj(t)− zjd

)2
that minimizes the square of deviation

from the plane zj (t) = zjd. Likewise, η > 0 is asso-

ciated with the cost that minimizes the square of dif-

ference between the moving target and UAVs, and the

term r (X) is the robustness function as in (8). Further-

more, we have added the square of the rate of change of

controls in the cost as,
(
U̇ j (t)

)2
, by minimizing which

we minimize the chances of jerky controls, and ζ > 0 is

the penalty term associated with that.

Now we define the trajectory generation problem

for a swarm of quad-rotor as, given an initial condi-

tion (xj0, y
j
0, z

j
0) for a jth quad-rotor at time τ0, find

the control-state pair (X (t) , U (t)) to minimize the cost

(15) subject to

Quad-rotor model (2)+

Obstacle constraint (7)+

Collision constraint with kth quad-rotor (14)+

thrust limitation (??)

X =
[
X1T , ..., XNsT

]T
U =

[
U1T , ..., UNsT

]T
j, k = 1, ..., Ns

(Problem 1)

2.4.2 Case B: solve iteratively for UAVs in a swarm

The most of the required components of the problem

definition are already detailed above, thus, we briefly

define the additional component to this second case

problem. In this case, we consider an approach of it-

eratively solving for UAVs in a swarm while consider-

ing trajectories from other UAVs as fixed, thus the cost

function to the second case differs from the first case.

In the second case we define the cost function for the

jth quad-rotor as,

J(Xj (·) , U j (·)) =

∫ τf

τ0

F
(
Xj (t) , U j (t) , t

)
dt (17)

where all the parameters are as defined in (15). Then,

the problem for this case is defined as, given an initial

condition (xj0, y
j
0, z

j
0) for a jth quad-rotor at time τ0,

and trajectories of all other UAVs in the swarm as fixed,

find the control-state pair
(
Xj (t) , U j (t)

)
for jth UAV

in the swarm, to minimize the cost (17) for a jth quad-

rotor subject to

Quad-rotor model (2)+

Obstacle constraint (7)+

Collision constraint with kth quad-rotor (14)+

T j ≤ Tmax
k = 1, ..., Ns

(18)

Once we have defined (18), we solve the swarm problem

as follows,

for j = 1 : Ns
Solve (18)

Update X, U

end

(Problem 2)

Using a MPC framework we solve the swarm problem

(18), in which Xj and U j are design variables while the

trajectories for the other UAVs are considered fixed. At

each MPC window, we solve (Problem 2) iteratively for

each UAV where we initialize the problem at the solu-

tion of previous MPC window. We use SQP approach

to solve (18) in (Problem 2) where we have set the max-

imum number of SQP iteration to be 5.

3 The Approach

Now we outline the method to solve the above prob-

lems. Although, we may solve the problems for en-

tire trajectory, the appearance of new obstacles during

flight anyway requires re-solving of the problem. There-

fore, it is not necessary to solve for the entire trajectory,

rather a portion of the trajectory over an immediate

short window is enough. Thus, we solve the problem us-

ing the finite horizon model predictive control (MPC)

approach [11], with the same constraints and the cost

function as the original problems. In order to solve the

problems, they are first discretized at the sampling time

up to the finite horizon as in [18,19]. Then, the dis-

cretized problems are approximated with a quadratic

programming (QP) problem in which we do the second

order Taylor approximation to the cost function and

the first order Taylor approximation to constraints. To

solve the QP problem we use the sequential quadratic

programming (SQP) approach as outlined in [12]. The

SQP algorithm solves an NLP problem by solving se-

quences of QP sub-problem within it, in which the QP

sub-problem is solved using a custom solver.

Real-Time Trajectory Generation for a Swarm of Quad-rotor UAVs using Custom Solver 7

The custom solver is generated using a custom solver

generation program which is developed by the authors

to solve QP problems with the positive semi-definite

Hessian, in a computationally efficient way [20]. Al-

though, custom solver is generated only for QP prob-

lems with the positive semi-definite Hessian, there may

arise a QP problem within the SQP approach which

may have the indefinte Hessian to the overall cost func-

tion due to the robustness function (8) used. In order

to deal with such an indefinite Hessian case, we take

an approach which is similar to infeasible start Newton

method ([21], Chapter 10.3), where by choosing an ap-

propriate slack variables in the robustness function the

overall cost Hessian could be made very close to posi-

tive semi-definite, resulting in the use of custom solver.

A custom solver generated using the custom solver gen-

eration program has a fixed known memory, hardcoded

in C programming language. It is also free from pro-

gramming overhead or library function (such as func-

tions for matrix operations). The aim of using a custom

solver, rather than a general QP solver is to eliminate

the unnecessary requirement for storing and computa-

tion with zeros of a large sparse matrix (the Hessian

and Jacobian) of a QP problem.

In terms of stability to the MPC problem, the stan-

dard method of establishing the closed-loop stability

does not apply due to the absence of end-point cost or

constraints [22]. However, under certain controllability

conditions the MPC trajectory converges even without

an end-point cost, provided the long enough prediction

horizon in comparison to the control window, as demon-

strated by Reble in [23]. As a recent case-specific exam-

ple for a fixed-wing UAV, Alexander Joos has shown

that a sufficient finite horizon could yield asymptotic

stability of MPC problem [24]. In this paper we do not

investigate the theoretical aspects of stability for the

MPC problems as our focus is on computational as-

pects. However, we will numerically demonstrate it.

4 Numerical Example

We consider an example with six quad-rotors in a swarm

that fly along their respective reference path towards

the positive x − axis, with the aim of minimizing the

distance to their respective moving targets. The param-

eters for quad-rotors are taken from Table 1, while the

starting point for each quad-rotor in the swarm, along

with their respective reference paths are given in Table

2. The parameters for this example are taken from Ta-

ble 3. For the example scenario we take seven station-

ary obstacles distributed around the space such that

reference paths for quad-rotors are obstructed, and two

moving obstacles such that they intersect quad-rotors

on their way. The starting point for moving targets

is (xa = 20) m. The targets move along the positive

x− axis with the velocity vector (3, 0, 0) m/s, and we

stop the simulation once the targets cross x = 300 m.

Table 1 Quad-rotors Parameters

Parameters values Parameters values
g (m/s2) 9.81 Kdz 0.25
M (kg) 0.468 k (Nm s2/rad2) 1.14 ∗ 1e− 7
L (m) 0.255 b (N s2/rad2) 2.98 ∗ 1e− 6
Kdx 0.25 Iz (kg m2) 8.801 ∗ 1e− 3
Kdy 0.25 Ix = Iy (kg m2) 4.856 ∗ 1e− 3

Table 2 Starting points for quad-rotors (units in meter)

Quad-rotor(j) Initial Point (xj0, y
j
0, z

j
0) yjd zjd

1 (0, 100, 20) 100 20
2 (0, 100, 40) 100 40
3 (0, 150, 20) 150 20
4 (0, 150, 40) 150 40
5 (0, 200, 20) 200 20
6 (0, 200, 40) 200 40

Table 3 Problem 1: Parameters

Parameter Value Parameter Value
α, β 0.5, 0.5 Tmax 2 ×M × g
η 0.1 N 20
ζ 0.2 ∆t(sampling time) 0.3 s

[τ0, τf] [0, 6] s

All the problems in this paper are solved using a laptop

computer with 1.8 GHz (Intel Core i5) processor and

4 GB of (1600 MHz DDR3) RAM . Figure 3 shows the

resulting trajectories with both the cases overlapped

where the trajectories in the red colour represent the

results from (Problem 1), while the trajectories in the

black colour represent the results from (Problem 2). In

the figure, the starting points and the target points

along the reference path are indicated for each UAV, in-

cluding trajectories belonging to each UAVs are shown

as well with the even numbered UAVs at the top while

the odd numbered UAVs at the bottom. In among the

moving obstacles the speed have been indicated above

them, where the moving obstacle starting from y = 300

m at the height of 20 m and goes towards x−axis with

5 m/s, while the other moving obstacle starting from

same height at y = 0 moves along the positive y− axis
with 3 m/s. As indicated in the figure, each UAV has

been given a reference path represented by the green

dashed line. In the figure, trajectories for UAV 4 be-

tween the problems almost overlaps, while for UAV 2,

and UAV 6 the trajectories between the problems are

very close. Whereas, for UAV 1, UAV 3, and UAV 5 the

trajectories between the problem do not overlap and

8 Min Prasad Adhikari, Anton H. J. de Ruiter

this align with the propositions from [25] where in the

case of obstacles the trajectories between the problems

may not be the same. Moreover, we note that the tra-

jectories between the UAVs may not progress equally

while avoiding obstacles (in the presence of obstacles),

however, after obstacles have been avoided the UAVs

lagging behind speed up to catch-up with other UAVs.

As the UAVs could speed up to 5 m/s while moving

targets are moving at 3 m/s, all UAVs in the absence

of obstacles can catch–up with their respective mov-

ing target and thus progress equally in the direction

of flight. Figure 4 compares the solution time between

Fig. 3 Comparison of resulting trajectories

(Problem 1) and (Problem 2) at each MPC time in-

stant. In the figure, the solution time for a UAV within

a MPC instant in (Problem 2) is approximately 4 ms in

average with maximum of 9.4 ms, resulting in the total

solution time for the swarm to 24.4 ms at the maximum

at a MPC instant, and 17.8 ms at the minimum. This

is mainly due to the reduction in problem size where

a QP sub-problem within the (Problem 2) solves less
complex problem compared to the case of (Problem 1),

where the solution time for (Problem 1) is more than

104.7 ms for all the instances, with the maximum of

176.5 ms of a MPC instant. In terms of the compu-

tational complexity of the problems, (Problem 1) has

35994 nonzero entries in the KKT matrix within its QP

sub-problem, whereas the problem within (Problem 2)

has 6189 nonzero entries. While both (Problem 1) and

(Problem 2) solve the swarm scenario, the formulation

in (Problem 2) has an advantage in terms of solution

time as seen in Figure 4. Thus, to examine the solution

time for range of scenarios, in the following a Monte-

Carlo test for (Problem 2) is presented.

4.1 Monte-Carlo test

The computational result of (Problem 2) shown above

may not be a sufficient demonstration of real-time com-

putability of the swarm problem. Therefore, in this sec-

tion we perform a Monte-Carlo test for the problem

0 20 40 60 80 100

Flight time (seconds)

10
0

10
1

10
2

S
o

lu
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
) Comparison in solution time (milliseconds)

UAV1 (P2)

UAV2 (P2)

UAV3 (P2)

UAV4 (P2)

UAV5 (P2)

UAV6 (P2)

Problem 2

Problem 1

 (t)

Fig. 4 Comparison of solution time

with 100 scenarios. In any scenario among 100, the

number of obstacle ranges from 2 to 20, obstacles pa-

rameters (in (7)) ai, bi, and ci range from 20 to 50 m,

and px, py, and pz range from 2 to 10. The obstacles

parameters that determines its location and shape are

randomly initialized with uniform distribution. Obsta-

cles are distributed in the space between 100 m to 800

m along the positive x − axis (not at 0 so as to avoid

obstacles near the initial point), −300 m to 300 m

along the y-axis and 0 m to 400 m along the z-axis.

By choosing such distribution, we expect that the ob-

stacles may fall in or along the desired reference path

and as a consequence, an avoidance maneuver is nec-

essary for safe flight. In any scenario initialized there

are at least one stationary and one moving obstacle,

and at the maximum, we can have ten stationary and

ten moving obstacles. Moving obstacles in the scenario

are initialized with velocity VO, and angles ψO and γO
which are angles about the positive x−axis and above

the x−y plane respectively. These moving obstacle pa-

rameters are drawn from ranges VO ∈ [0.5, 5.55] m/s,

ψO ∈ [−π, π] rad, and γO ∈ [−π/2, π/2] rad. For the

test, the following kinematics is used for a moving ob-

stacle. ẋOẏO
żO

 =

VO cos (ψO) cos (γO)

VO sin (ψO) cos (γO)

VO sin (γO)

(19)

where xO, yO, and zO represent the position of an ob-

stacle. In order to have a meaningful way to terminate

the simulation and analyse the results, we stop the sim-

ulation for each scenario once the moving target crosses

x = 800 m. In the following we summarize the results.

Figure 5 shows the statistical result of solution time

for (Problem 2), in which almost all of instances takes

two ranges, 2–4 and 4–6 milliseconds. Although the so-

lution time for the swarm is much important than for a

UAV in the swarm, but for the approach we take the to-

tal solution time for the swarm are most likely to be at

the multiple of the solution time for a UAV, due to the

same sized problem to be solved iteratively. The figure

Real-Time Trajectory Generation for a Swarm of Quad-rotor UAVs using Custom Solver 9

shows that for a little over 20% of the instances in the

Monte-Carlo test, custom solver takes 2–4 milliseconds

of solution time for a quad-rotor, while for approxi-

mately 76% of the instances the sovler takes from 4–6

ms of solution time. The number of nonzero entries in

the KKT matrix of a QP problem posed in this test is

8279 (the custom solver is generated to account up to

20 obstacles), as such the computational complexity of

this problem seems roughly as similar to the example

problem above with the variation of 1–2 ms solution

time.

0~2 2~4 4~6 6~8 >8

Computation Time Per Instances in milliseconds (ms), for UAVs

0

20

40

60

80

%
 o

f
In

st
an

ce
s

% of Instances vs Computation Time

Fig. 5 Computation time per instances for quad-rotors

Finally, Figure 6 shows that, all the instances in

the Monte-Carlo test are solvable within 30 milliseconds

using the custom solver in the laptop computer.

0~20 20~25 25~30 30~35 >35

Computation Time Per Instances in milliseconds (ms), for the Swarm

0

20

40

60

80

100

%
 o

f
In

st
an

ce
s

% of Instances vs Computation Time for the Swarm

Fig. 6 Computation time per instances for the swarm

4.2 Scalability study

Encouraged by the solution time of the approach in

(Problem 2), we study its scalability with different num-

ber of UAVs the swarm. For this study we use the same

obstacle configuration as in the numerical example at

the beginning of this Section, whereas the starting point

for UAVs are distributed along y − axis and z − axis
with equal distances between them at x = 0. Moreover,

a reference path for each UAV are defined such that

it extends parallel from the starting point of the UAV

along x − axis. In addition to the swarm study with

6 quad-rotors, we solve the swarm problem with 16, 32

and 64 quad-rotors and compare the solution time. For

the case of 16 UAVs, the starting point are assigned

30 m apart along y and z − axis with the first one at

(0, 30, 30) m, while for the swarm problem with 32 and

64 quad-rotors, the starting point for UAVs are equally

spaced at 20 m apart along y and z−axis with the first

one at (0, 20, 20) m. As similar to the example at the

beginning of this Section, we terminate the simulation

once the moving target crosses x = 300 m.

Figure 7 shows the solution time for the swarm prob-

lems. While the solution time for the swarm increases

with the increasing number of UAVs, it is notable from

Table 4 that the average solution time for (18) does

not scale linearly with the increasing number of UAVs

in the swarm. From the study we note the following,

the maximum solution time of a MPC time instance to

solve the swarm problems with 6, 16, 32 and 64 UAVs

are 24.44, 74.32, 192.11, and 554.99 milliseconds respec-

tively. It is also notable that the laptop computer is at

least able to generate real-time trajectory for up to 32

quad-rotor UAVs within the allocated sampling time

which is set to 300 milliseconds. Table 4 presents the

0 20 40 60 80 100

Flight time (seconds)

10
0

10
1

10
2

S
o
lu

ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d

s
)

Comparison in solution time (milliseconds)

6 UAVs

16 UAVs

32 UAVs

64 UAVs

 (t)

Fig. 7 Computation time for various swarm size

average solution times along with problem complexity

for comparison. In the table, Avgtq represents the aver-

age solution time for (18), Avgtsw refers to the average

solution time for Problem (Problem 2), and Nnzproblem
is the number of non-zero in the KKT system of a QP

sub-problem within the (Problem 2), this also repre-

sents the problems computational complexity as the

solution time substantially depends on the amount of

non-zero in the KKT system. In the table, we see that

the Avgtq does not grow linearly as it is directly re-

lated to Nnzproblem, however Avgtsw grows little over

the linear rate. It is also worth noting that the prob-

lem size does not double up at doubling the number of

quad-rotors in the swarm.

10 Min Prasad Adhikari, Anton H. J. de Ruiter

Table 4 Swarm problems with their average solution time

Quad-rotors Avgtq in ms Avgtsw in ms Nnzproblem
6 3.49 20.94 6189
16 3.94 63.01 7937
32 5.17 165.48 10977
64 7.65 489.75 17057

5 Conclusion

A swarm problem with moving targets is studied. Utiliz-

ing a centralized approach, swarm problems are solved

that accommodated the dynamical, and the control con-

straints. Among the two cases considered for the present

study, the second case that solves for UAVs iteratively

within a MPC time instant is computationally faster

than the first case that solves for the entire swarm at

a MPC time instant. In particular, we were able to

achieve 24.4 milliseconds of solution time for a swarm

with 6 quad-rotors using the second approach. From the

Monte-Carlo test for the swarm with 6 UAVs, we note

the consistency in the solution time where the swarm

problem with the second approach is solvable within 30

milliseconds. Results from the scalability study show

that the swarm problem with 32 quad-rotors are solv-

able within the sampling time in the laptop computer.

References

1. Markus Hehn and Raffaello D’Andrea. Quadrocopter
trajectory generation and control. In 18th IFAC World
Congress, Milano (Italy), August 28 - September 2 2011.

2. Michael James Campobasso. Leader-follower trajectory
generation and tracking for quadrotor swarms. Master’s
thesis, Embry-Riddle Aeronautical University, Daytona
Beach, Florida, April 2017.

3. Wolfgang Honig, James A. Preiss, T.K. Satish Kumar,
Gaurav S. Sukhatme, and Nora Ayanian. Trajectory
planning for quadrotor swarms. IEEE TRANSACTIONS
ON ROBOTICS.

4. Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. To-
wards a swarm of agile micro quadrotors. In Robotics:
Science and Systems, pages 9–13, Sydney, NSW, Aus-
tralia, July 2012.

5. Carlos E. Luis and Angela P. Schoellig. Trajectory gen-
eration for multiagent point-to-point transistions via dis-
tributed model predictive control. IEEE Robotics and
Automation Letters, 2018.

6. Daniel Morgan, Giri P Subramanian, Soon-Jo Chung,
and Fred Y Hadaegh. Swarm assignment and trajectory
optimization using variable-swarm, distributed auction
assignment and sequential convex programming. The In-
ternational Journal of Robotics Research, 35(10):1261–
1285, 2016.

7. Myoung-Chul Park, Sung-Mo Kang, Jae-Gyeong Lee,
Gwi-Han Ko, Koog-Hwan Oh, Hyo-Sung Ahn, Young-
Cheol Choi, and Ji-Hwan Son. Realization of distributed
formation flying using a group of autonomous quad-
copters and application to visual performance show.
In IEEE Transportation Electrification Conference and
Expo, Asia-Pacific (ITEC), Busan, Korea, June 1-4 2016.

8. James A. Preiss, Wolfgang Honig, Gaurav S. Sukhatme,
and Nora Ayanian. Crazyswarm: A large nano-
quadcopter swarm. In IEEE International Conference
on Robotics and Automation (ICRA), Singapore, May
29 - June 3 2017.

9. Jacob Mattingley. Cvxgen: a code generator for embed-
ded convex optimization [webpage], [Online: Accessed on
31 October 2017].

10. Z. Zuo. Trajectory tracking control design with
command-filtered compensation for a quadrotor. IET
Control Theory and Applications, 4(11):2343–2355, 2010.

11. P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H.E.
Tseng. A linear time varying model predictive control
approach to the integrated vehicle dynamics control prob-
lem in autonomous systems. In Proceedings of the 46th
IEEE Conference on Decision and Control, New Orleans,
LA, USA, Dec. 2007.

12. Richards H. Bryd, Jean Charles Gilbert, and Jorge No-
cedal. A trust region method based on interior point
techniques for nonlinear programming. HAL Archives,
(00073794):44, May 2006.

13. Michael A. Feldman. Efficient low-speed flight in a wind
field. Master thesis, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia, July 1996.

14. Teppo Luukkonen. Modelling and control of quadcopter.
Independent research project in applied mathematics,
August 22 2011.

15. L. P. R. Lewis. Rapid motion planning and autonomous
obstacles avoidance for unmanned vehicles. PhD thesis,
Naval Postgraduate School, Dec 2006.

16. M. A. Hurni, P. Sekhavat, and I. M. Ross. Autonomous
trajectory planning using real-time information updates.
AIAA Guidance, Navigation and Control Conference
and Exhibit, Honolulu, Hawaii, August 18-21 2008.

17. Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh.
Model predictive control of swarms of spacecraft us-
ing sequential convex programming. volume 37. JOUR-
NAL OF GUIDANCE, CONTROL, AND DYNAMICS,
November-December 2014.

18. Yang Wang and Stephen Boyd. Fast model predictive
control using online optimization. IEEE TRANSAC-
TIONS ON CONTROL SYSTEMS TECHNOLOGY,
18(2):267–278, March 2010.

19. D. Lam, C. Manzie, and M. Good. Model predictive con-
touring control. IEEE Conference on Decision and Con-
trol, pages 6137–6142, Dec. 2010.

20. Vandenberghe L. The cvxopt linear and quadratic cone
program solvers [online]. March 2010. [Accessed: 15
March 2017].

21. Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2009.

22. Mayne D. Q., Rawlings J. B., Rao C. V., and Scokaert
P. O. M. Constrained model predictive control: Stability
and optimality. Automatica, 36(6):789–814, June 2000.

23. Marcus Reble. Model Predictive Control for Non-
linear Continuous-Time Systems with and without
Time-Delays. PhD thesis, Institut für Systemtheorie
und Regelungstechnik, Universität Stuttgart, Stuttgart,
February 2013.

24. Alexander Joos. Real-Time Predictive Motion Planning
for Fixed-Wing Aerial Vehicles. Phd thesis, Universität
Stuttgart, February 2014.

25. Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh.
Swarm assignment and trajectory optimization us-
ing variable-swarm, distributed auction assignment and
model predictive control. Kissimmee, Florida, 5-9 Jan-
uary 2015. AIAA Guidance, Navigation and Control Con-
ference.

