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Abstract— As for the high Reynolds flow, aerodynamic design is mostly based on Reynolds Averaged 

Navier-Stocks equations (RANS). As introducing the ensemble average hypothesis, the accuracy of 

RANS equation is widely doubted in predicting the transition and flow separation, for example the 

laminar separation bubble or stalls under high angle of attack. This article takes an airfoil as an example 

and conducts a research on the data-augmented turbulence modeling design. Based on the high fidelity 

prior data from experiment, a spatially-varying term which will act as a multiplier of the viscous 

production term in Spalart-Allmaras model equation can be constructed using primal N-S flow and 

adjoint flow. In order to handle the issue of the extreme high dimension of this optimization problem 

(which is close to the number of grids), an adjoint method is used to solve the derivatives efficiently. The 

posterior result state that using a data-augmented turbulence modeling could predict the flow 

characteristics more accuracy, which can let the prediction of aerodynamic parameters like lift and drag 

more precise. 
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1 INTRODUCTION  

Computational fluid dynamics is widely used in physics and engineering problems 

such as aerodynamics and aerospace industry, weather simulation and environmental 

engineering. There are some of the computational methods such as Direct Numerical 

Simulation (DNS) and Large Eddy Simulation (LES) which can provide relatively 

accurate solution. However, their calculation cost are expensive and require a long 

period of time consuming. From the consideration of affordability, Reynolds Averaged 
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Navier-Stokes (RANS) equation is still the majority method in industrial and academic 

flow solvers. Through the introducing of ensembled average assumptions, explicit 

expression [2] and partial differential equation [3] are introduced to solve the Reynolds 

stress. The turbulent models, such as Spalart-Allmaras and Menter k-omega SST, model 

the spatio-temporal multiscale turbulent structures and significantly improve the 

efficiency of calculation. 

Meanwhile, the ability of RANS model to perform a high-fidelity computation is 

restricted due to the introduction of the spatio-temporal assumption and the constrains 

of model parameters. The restriction can be state from two aspect, the first is that some 

of the fluid which included complex effects such as flow separation and large adverse 

pressure gradient can not be accurately modeled [4]. The second point is that the non-

dimensional parameters are setting based on a small set of canonical problems and are 

of less generality when solving flows under different condition or geometrics. In 

addition, during the application, the selection of turbulence models requires personal 

judgement which relys on designers’engineering experiences. 

 As for the basic research of turbulent fluid, Prandtl-con-Karman’s log theories [5] 

describe the local approximate solution on logarithmic region , but failed to provide a 

whole prediction of velocity and kinetic energy profile. Schaefer [6][7] conduct a 

sensitivity analysis on the S-A model closure coefficients. It was stated that the von 

Kaman constant (κ) and the turbulent Prandtl number (σ) play an important role on the 

changing of quantities uncertainty while the primary sources of uncertainty come from 

the formation of the model.  

 Early in the 20th century, Parneix[8] used DNS datasets to improve the terms in 

turbulence model such as the second moment closure. They modified the equation to 

improve the model accuracy. Most of the previous work for model discrepency 

improvement use data to calibrate the parameters in existing models such as S-A model. 

Recently, data augmented methods are used to address the model discrepancies. Xiao[9] 

computed the distribution of disturbance in the anisotropy Reynolds stress tensor based 

on DNS datasets. The disturbance to the anisotropic tensor is calculated with ensurance 

of realizability of the resulting perturbed stresses. The perturbations are reconstructed as 

a function of local flow variables.  

Duraisamy[10] built a FIML approach that combined the flow inverse and 

machine learning. A specific objective function was used to quantificationally describe 

the model discrepency and a set of correction terms are embedded into the turbulence 
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model to improve the model accuracy. The mapping relationship between flow field 

characteristics and correction terms is established by using neural network method, 

which can be used to improve the accuracy of turbulence model under different flow 

conditions. 

Ling and Templeton [11] developed a machine learning classifier based on DNS 

and LES results to identify the turbulence in RANS models. They studied the flow field 

regions with significant deviations or irrational assumptions, and compared the training 

effects on certainty of different machine learning algorithms, such as support vector 

machine, decision tree and random forest. The results show that in the flow with different 

conditions, these classifiers can also identify the flow characteristics.  

Wang [12] states that the large deviation of Reynolds stress is the main reason that 

limits the prediction accuracy of the RANS model. It is important to identify these 

differences for improving the RANS model. Based on the averaged flow field 

characteristics of DNS data, a random forest is established to reconstruct the Reynolds 

stress tensor. The reconstruction is based on the fully developed turbulence in square 

pipe and the flow field with large flow separation. After learning, the RANS calculation 

can obtain more accurate results than the base turbulence model in the flow field with 

different geometric conditions. 

In this work, we managed a more comprehensive approach towards the discrepency 

improvement of RANS calculation on an airfoil RAE2822. Flow characteristics 

information is used to improve the accuracy of numerical calculation of RANS. The next 

section introduces the numerical approach and the third part follows the method of 

constructing a data-augmented turbulence model which is based on the discrete adjoint 

method. The fourth section gives the result and analysis toward the discrepency and 

correction. 

 

2.NUMERICAL METHOD 

There are several widely-used RANS turbulence models, such as the one-equation 

models Spalart-Allmaras, two-equation model k-omega SST and some other sophiscated 

models. The construction of turbulence models is based on dimentional analysis, and 

provide the closure terms of high order fluctuations in N-S equations. These terms are 

based on the dimensionaless empirical parameters.  

https://turbmodels.larc.nasa.gov/spalart.html
https://turbmodels.larc.nasa.gov/sst.html


The flow solver is setted on a cell-centred finite volume formulation of the 

compressible RANS equations on structured grids. The inviscid fluxed are discretized 

under the three-order MUSCL scheme and combined with steger-warming. LUSGS 

time-steping method. 

A C-type mesh with 305 points in the wrap-around direction and 65 points in the 

wall-normal direction is applied. The total cell number is approxiamately 24,000. The 

first layer y+ is set below unity and a grid vertification test is carried out to make sure 

the calculation accuracy. In the boundary condition, the flow variables at the farfield are 

set in the freestream condition and the eddy viscosity use the fully turbulent value at 

ν𝑡,∞/ν∞ = 3. Boussinesq assumptions are used to close the RANS equation.  

The freestream flow conditions correspond to a Mach number of 0.729 and 

Reynolds number of 6.5 million based on the chord length of 1.0 meter with an 2.31° 

angle of attack. The static pressure was computed based on the specified Reynolds 

number and Mach number and an assumed value of static temperature. The mesh is 

showed below in Fig 1. 

 

Fig. 1 Mesh of airfoil Rae2822 

 

The Spalart-Allmaras [13] is chosen as the turbulence model in this paper. It can 

be written as  

𝐷�̂�

𝐷𝑡
= 𝑃 (�̂�, U) − 𝐷 (�̂�, U) + T(�̂�, U) 

In which, U represents the Reynolds averaged flow variables and 𝑃 (�̂�, U) , 

𝐷 (�̂�, U) and T(�̂�, U) are the production, destruction and transport terms respectively. 

They have the formation as,  
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𝑃 (�̂�, U) =  𝐶𝑏1(1 − 𝑓𝑡2)�̂��̂� 

�̂� = Ω +
�̂�

𝜅2𝑑2
𝑓𝑣2 

𝐷(�̂�, U) =  𝑐𝑤1𝑓𝑤(
�̂�

𝑑
)2 

𝑇(�̂�, U) =
1

𝜎
[∇ ∙ ((𝜈 + �̂�) ∇�̂�) + 𝐶𝑏2(∇�̂�)2] 

Turbulence eddy viscosity can be gained through: 

𝜈𝑡 = 𝑓𝜈1�̂� 

To check the RANS solver, we perform a numerical calculation towards a channel 

flow under two different Reynolds number. Fig. 2 shows the velocity profile of RANS 

calculation and DNS database [14]. From the comparison of solution from RANS and 

DNS, the relative error of velocity and friction coefficient is reasonable which is smaller 

than 2%. 

Table 1 Verification of RANS solver by the relative error of friction coefficient 

Cf (×10-3) DNS SA-base Relative error 

Reτ=550 5.8909349 5.9877831 1.64% 

Reτ=1000 5.0954817 5.1198286 0.48% 

 

   

(a) Reτ=550                                        (b) Reτ=1000 

Fig. 2 Comparison of u profile between DNS and S-A turbulence model 

 

3.DATA AUGMENTED MODELING BASED ON ADJOINT 

METHOD 

The coefficients in the turbulence models are decided based on small set of prior 

flows, so it’s hard to construct connection with those important physical characteristic 



parameters such as local Reynolds number and Mach number, which are changing with 

different flow conditions or geometry profiles. The major discrepency comes from the 

turbulence model formation, rather than the option of coefficient. Thus, the conventional 

methods that adjusting the coefficient have limited effect towards the accuracy of 

calculation. In this work, a spatially-varying factor 𝛽(𝑥) is added into the turbulent 

model equation as a multiply of production term. 𝑥  refers to each grid point in the 

domain. The modified model version can be written as, 

𝐷�̂�

𝐷𝑡
= 𝛽(𝑥) ⋅ 𝑃(�̂�, U) − 𝐷 (�̂�, U) + 𝑇(�̂�, U) (3.1) 

The influence of factor 𝛽(𝑥) is global rather than for production term only, and it 

can be seen as adding a correction term δ(𝑥) as δ(𝑥) = (𝛽(𝑥) − 1) ⋅ 𝑃(�̂�, U). Through 

the introducing of this factor, modified RANS equation can gain a higher accurcy 

solution. The objective function is stated as: 

𝐽 = min{ ∑ (𝑑𝑗,𝑒𝑥𝑝 − 𝑑𝑗)2𝑁𝑐
𝑗=1 + ∑ (𝛽 − 𝛽𝑝𝑟𝑖𝑜𝑟)2𝑁𝑐𝑒𝑙𝑙

𝑗=1 }  (3.2) 

Here 𝑑 represents the flow variables, and 𝑑𝑗,𝑒𝑥𝑝 is the data from wind tunnel 

experiment [15]. 𝛽 has a prior value of unity. We choose pressure coefficient for 𝑑 

and thus the objective function can be stated as,  

𝐽 = min {∑ (𝐶𝑝𝑗,𝑒𝑥𝑝 − 𝐶𝑝𝑗)
2𝑁𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑗=1
+ ∑ (𝛽 − 𝛽𝑝𝑟𝑖𝑜𝑟)

2𝑁𝑐𝑒𝑙𝑙
𝑗=1 }  (3.3) 

The objective function is regularized by a regulation factor λ. It can be introduced 

to biases the 𝛽 solution to sit near the initial unity setting. Engineering judgement is 

required when setting the value of λ. A lower value of  λ leads to over-fitting while a 

higher one may cause fitting failure. We choose a value of 10−8 to let the 𝛽 occupy a 

small order value in the objective function comparing with the flow variable part. 

In order to minimize the objective function, we need to solve out the derivatives 

of objective function with respect to the design variables. The number of design 

variables is the same as the grid scale which is very large in an airfoil CFD solver and 

the conventional finite different method requires large computational resouces. Due to 

the expansive computational cost, the adjoint method is applied to solve the gradient. 

The adjoint method is efficient and spend approxiamately only two times of the flow 

solver’s time cost. In the process of solving, the amount of calculation is independent of 

the number of design variable, and can greatly reduces the calculation time. The adjoint 

method is based on the control theory of partial differential equation system, and the 



flow control equation is set as constrains. The aerodynamic design problem is 

transformed into an optimization problem with specific constrains. In 1927, Jameson 

[16] first applied adjoint method to aerodynamic design. Since then, continuous adjoint 

method and discrete adjoint method have been developed. Considering the complexity 

of code, the discrete adjoint method [17] is adopted in this paper.  

                                                            [
𝜕𝑅

𝜕𝑈
]𝑇𝜓 = [

𝜕𝐽

𝜕𝑈
]𝑇  (3.4) 

𝑑𝐽

𝑑𝛽
=

𝜕𝐽

𝜕𝛽
− 𝜓𝑇 𝜕𝑅

𝜕𝛽
 (3.5) 

Through constructing and solving of adjoint equation in Eq. (3.4), the derivative 

of the objective function with respect to the design variable 𝛽(𝑥) can then be obtained 

from Eq. (3.5). Then, the steepest descent method with fixed step is used to settle the 

optimization problem. The iteration process is terminated when the objective function 

attain a steady value. The final set of 𝛽(𝑥), which is the optimization solution can be 

embedded into the turbulence model to obtain more accurate calculation results. The 

coefficient matrix on the left side of the adjoint equation [
𝜕𝑅

𝜕𝑈
]𝑇 is a large sparse matrix 

and this sparse linear system of algebraic equations is solved using fgmres routine, an 

iterative solver in Math Kernel Library which use the generalized minimal residual 

method (GMRES) [18]. 

Accuracy of the adjoint method is verified through a flat plate case. In this case, 

the coeffient 𝛽(𝑥) is added into the solver as the way we state. The finite difference 

method is used by introducing small disturbance to the design variables. The comparison 

of adjoint method and finite difference method can be seem in fig.3, and the relative 

error is quite reasonable. 

 

Fig. 3 Verification of adjoint method with the comparison of finite difference method 

 



4. RESULT AND ANALYSIS 

The value of λ in objective function is estimated by both the experimental error and 

the error in base solver and set at 10-8. The result of surface pressure coefficient is 

shown in fig. 4. The modified S-A model has a higher accuracy in objective function 

The u velocity field and pressure fields are shown in fig. 5 and fig. 6. The location of 

shock wave, which is approxiamately recognized by the flattening of the pressure curve, 

is closer to the experimental data. The lift coefficient, shown in table 2, is improved as 

well that the absolute relative error decrease from 4.07% to 0.427%. 

 

 

Fig. 4 Surface pressure for the Rae2822 airfoil at Re=6,500,000 and Ma=0.729 

 

 

(a)Base S-A                                                           (b)Modified S-A 

Fig. 5 Comparison of velocity fields of airfoil 

 



 

(a)Base S-A                                                         (b)Modified S-A 

Fig. 6 Comparison of pressure fields of airfoil 

 

Table 2 Comparison of lift coefficient 

 Experiment Base S-A Modified S-A 

CL 0.7309 0.70111274 0.727782 

Relative error / -4.07% -0.427% 

 

Fig.7 shows the field of correction factor 𝛽(𝑥), we could see that the regions with 

significant changes are concentrated near the surface of airfoil and the wake region. 

The region near the upper and lower airfoil surface is directly related to the pressure 

coefficient and also dominate the correction field. In the comparison of pressure 

coefficient, values at X/C=0.55 see a notable change and this is consistent with the peak 

value in the distribution of correction term.  

 

Fig. 7 field of correction factor 𝛽 

  



CONCLUSION 

The present study proposed a generalized data-augmented turbulence model based 

on the discrete adjoint formulation which can eliminate the error of turbulence model 

by adding a correction factor to the producion term in S-A model. After solving the 

adjoint equation and optimize the distribution of correction factor, the discrepency of 

origin RANS solution and high fidelity experiment result is corrected. In the process, 

elements of regulation factor λ and step length affact the correction effect and are 

designed carefully. A propriate value of regulation factor affact degree of fitting and 

step length is related to the convergence speed and steadiness. In the result, the accuracy 

of lift coefficient and pressure coefficient distribution is improved and the distribution 

of corrective factor is showned.  
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