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Abstract: This paper proposes a novel concept of partial space elevator with parallel tethers and 

multiple climbers. The parallel tethers impacting on the dynamic response of partial space elevator 

is investigated based on a high fidelity and accurate model of PSE. The model is developed based 

on the nodal position finite element method in the arbitrary Lagrangian-Eulerian description. The 

results show the tethers collides when the transient motion of climbers is not the same, such as the 

movement direction of climbers is opposite and the time delay between climbers. It also found that 

the multiple climbers of each other may aggravate the libration motion of PSE without predesigned 

time shift. The results show the trajectories of climber very important and should be well designed 

to avoid the collision of tethers and assure the safety operation of load transfer. 
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I. Introduction 

Partial Space Elevator (PSE) is an attractive alternative to the classical space elevator due to its 

ability for long-range transfer of payloads between two satellites at low cost [1, 2]. PSE has been 

a good demonstration for space elevator technology, and the construction of a PSE is relatively 

easy to achieve in near term [3].  

Past decades have witnessed many efforts to the dynamics of PSE, and they can be categorized 

in terms of number of climbers, one climber case and multiple climbers. For the case of one climber, 

Lorenzini [4, 5] initially proposed the concept of space elevator system attached to International 

Space Station and study its dynamics based on the two-piece dumbbell model. Later, the transient 

motion of climber impacting on the dynamics of PSE is investigated [6-8], and the study of system 

parameters of PSE, such as mass ratio of climber to satellite, tether length, and climber’s speed, 

influence on the dynamic characteristics of PSE is conducted. After that, the trajectory of climber 

is optimized to maximize the suppression of the libration angle of PSE based on the two dumbbell 

model [9, 10], and the feasibility study of the trajectory of climber applied to the PSE with flexible 

tether is conducted [10]. Recently, a stabilization method is proposed to suppress libration motion 

of PSE by cancelling the generated Coriolis force of moving climber though the regulation of 

deployment/retrieval speed at end satellites [11]. Here, just name a few, the detailed review of the 

dynamics of PSE with one climber can be found in our previous work [12, 13]. For the case of 

multiple climbers, the concept of multiple climbers with proper phase shift is proposed to alleviate 

the residual libration of PSE by one climber [2]. The background mechanism is that the induced 

Coriolis force of one moving climber is cancelled by another climber with pre-planned trajectory. 

From this viewpoint, the simultaneous operation of dual climbers impacting on the dynamic 

response of PSE is investigated, where one climber moves from bottom to upper and the other one 
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moves from upper to bottom [14]. The results show the simultaneously operation of two climber 

provide positive effect in suppressing the libration of PSE. Furthermore, different moving patterns 

of multiple climbers are detailed investigated [15]. To suppress the libration of PSE with multiple 

climbers, the concept of optimization of middle climber relative to the other climbers is firstly 

proposed, and the results show it is feasible. 

 In current paper, to take the advantage of multiple climbers and increase the efficiency of 

payload transfer, a novel concept of PSE with parallel tethers and multiple climber is proposed. 

Among it, the parallel tethers are connected by a transverse support structure with large rigidity at 

end satellites, and multiple climbers are supposed to operate along each tether. The transient 

motion of climber impacting on the libration motion of PSE is investigated by a high-fidelity model 

of PSE based on the nodal position finite element method. 

 

II. Mathematical formulation of partial space elevator 

A. Coordinate systems 

Consider a PSE with parallel tethers moving in an arbitrary orbit initially in a central gravity field 

as shown in Fig. 1. The PSE consists of main satellites, sub satellites, multiple parallel elastic and 

flexible tethers connecting these satellites, and multiple climbers are moving up and down along 

the tether. For simplicity, the numbering of tether is counted from left to right, and the movement 

direction of climbers (in the case of multiple climbers) belong to the same tether are supposed to 

be the same. The satellites and climber are modeled as lumped masses with their attitude dynamics 

ignored, given the extremely large ratio of tether length over the dimensions of satellites and 

climber. The motion of the PSE is described by three sets of coordinate systems: the global inertial 
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frame (OXYZ), the local frame of element (otbn) and the orbital frame (O’XoYoZo). The detail 

definition of these coordinate systems can be found in our previous works [10, 12, 13]. 

 

Fig.  1 Schematic of PSE with parallel tethers (two tethers) and multiple climbers. 

 

B. Nodal Position Finite Element Formulation of Partial Space Elevator 

1. Nodal position finite element formulation in ALE description 

In current paper, the nodal position finite element method is used to describe tether dynamics with 

large rotation and displacement [16-18]. Here, to easily describe and incorporate the motion of 

multiple climber[13] and tether deployment or retrieval [12], the material coordinate is introduced. 

Thus, the position and material coordinates are together taken as the state variables of PSE. The 

equation of motion of PSE are derived based on the generalized D’Alembert principle [17-20]. 

Taking k-th element as an example, such that, 

 , , , , ,M X F F Fe k e k e k g k p k= + −   (1) 
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where subscript k denotes the k-th element. Me  is the element’s mass matrix, X e  is the vector 

of acceleration, Fe , Fg , and Fp  are the vectors of elastic force, gravitational force, and the 

induced force due to variation of material coordinate.  

After the obtaining of the equation of motion of one element, the equation of motion of PSE 

can be assembled together in the conventional finite element. 

 M X F F Fe e e g p= + −   (2) 

where Me  is a hybrid mass matrix with satellites and climbers are supposed as lumped masses 

adding into the mass matrix of tether. The gravity of lumped masses is also added into the vector 

of gravity of tether. 

2.  Constraint equations between climbers and tether 

In the current paper, the motion of the climbers along the tether is enforced by non-holonomic 

kinematic constraints [12, 21, 22]. As stated in the previous section, the climbers are assumed as 

lumped masses. Assuming there are m parallel tethers ( 2m  ), and each tether has w climbers ( 

1w  ). The movement of climber is implemented by the moving nodes and variable-length 

elements. There are two steps to implement the movement of climber, (i) moving nodes with the 

time-varying material coordinate are assigned to the initial position of the climbers. (ii) adjacent 

elements connecting to the moving nodes are defined as the variable-length elements. The material 

coordinates of the moving nodes follow predefined trajectories of the climbers. Accordingly, 

constraint equations describing the motion of the climber are defined as, 

 ( ) ( )1, ,desired, 0  1,2, ,  and 1,2, ,mkl kl kl

j j jC p t p p k w l= − = = =  or ( )1 ,p t =C 0  (3) 

where subscribe j denotes the node number of the moving node, superscripts k and l denote the 

index of climber and tether, respectively. ,desired

kl

jp  denotes the pre-defined trajectory of the kth 
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climber belong to lth tether, the overhead dot represents the first order derivative with respect to 

time. 

3. Constraint equations of normal nodes 

Except for the moving nodes, the rest nodes are the normal nodes and their material coordinates 

are kept constant. Accordingly, the following constraint equations should be satisfied, 

 ( ) ( )( )2, , 0 1, 1, 1 1k kC p t p k j j n mw= = = − + + −  or ( )2 ,C 0p t =  (4) 

4. Constraint equations of transverse support structure 

As shown in Fig. 1, multiple parallel tethers are connected at end satellites by the transverse 

support structure with super high rigidity, for simplicity, the rigidity is assumed as infinite, the 

length is kept constant. The constraint equations of constant length are as, 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2

3,1 1 1, 1, 1, 1, 1, 1,

2 2 2
2

3,2 2 n 1, n 1, n 1, n 1, n 1, n 1,

1,2, ,m

1,2, ,m

j k j k j k

j k j k j k

C D X X Y Y Z Z

C D X X Y Y Z Z

j

k

j k

+ + + + + +

  = − − + − + −
   


  = − − + − + −
  

= 
 

= 
  

 or ( )3 ,C 0p t =  (5)

where 
2

1D  and 
2

2D  are the square of constant distance connecting two tethers. 

5. Equations of motion for the PSE with parallel multiple-tether and multiple-climbers 

The equations of motion for the whole PSE can be obtained by combining Eqs. (2)-(5), 

 ( )

( )

( )

3

,

1

1

2

3

,

,

,

XM X C λ F F F

C 0

C 0

C 0

e

T

e e j j e g p

j

p t

p t

p t

=


+ = + −


 =
 =

 =



  (6) 
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where ( ), 1,2,3XC
e

T

j j =  denotes the Jacobian matrix of constraint equations with superscript T 

representing the transpose of matrix, and ( )1,2,3λj j =  denotes the vector of Lagrange 

multipliers corresponding to these constraint equations.  

6. Merging and dividing of elements 

The detailed information of the process of merging and dividing of element can be found in Refs. 

[10, 12, 13]. Here, only a brief introduction will be given. There are two types of elements are 

defined, the constant-length and variable length elements. The length of variable length element 

varies as the moving node (climber) moves along tether. To avoid its length excessively long or 

excessively short, special attention should be paid. Four parameters are defined to implement the 

process of dividing and merging of elements meanwhile suppresses the oscillation caused by the 

node removal. They are the standard element length Ls, the upper (Lmax) and lower (Lmin) bounds 

of an element length, and the acceptance criteria e . These detailed parameters will be given in the 

simulation part. 

 

C. Libration motion of PSE with parallel tethers 

As shown in Fig. 3, the libration motion of the PSE can be easily expressed in the orbital coordinate 

system [1, 2, 6, 7, 23]. The detail definition of orbital coordinate system (O’XoYoZo) and 

transformation matrix from global coordinate system to the orbital coordinate system can be found 

in our previous work [13, 24]. The results of PSE are shown in the orbital coordinate system 

relative to the origin point. The libration motion of PSE with single tether cannot be directly used 

[6, 7, 13]. For the PSE with parallel tethers, the libration motion of PSE is defined as follows, a 

series of virtual libration angels are defined by straight lines connecting the main satellite, the 
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climbers, and the sub satellite, see the red dotted lines in Fig. 3. Taking the case of two climber 

and two parallel tethers as an example, there are six dotted lines. The in-plane angles 

( ), 1, ,3 and 1,2i j i j = =  and out-of-plane angles ( ), 1, ,3 and 1,2i j i j = =  are calculated as,  

 
( )1

, , , , ,

1

, , , , , , , , ,

tan ,

tan ( cos sin )

R R

R R R

o o

o o o

i j X i j Z i j

i j Y i j Z i j i j X i j i j



  

−

−

=

 = − + 

  ( 7) 

where ( ), , , , , , ,, ,R R R R
o o o

T

i j X i j Y i j Z i j=  is the vector of a dotted line expressed in the orbital coordinate 

system with the subscript i ( )1 3  representing the sequence of these three lines belong to the jth 

( )1 2 tether. 

 

Fig.  2  Definition of libration angles of PSE with parallel tethers and multiple climbers. 

 

III. Results and Discussion 

In current paper, the Backward Euler formulation is employed together with the Newton-Raphson 

iteration method to solve this nonlinear differential algebraic equation (6) [12, 13, 25]. Among it, 

the maximum iteration number and error tolerance of each iteration step are set as 100 and 10-11, 

XO

YO

ZO

Climber

Climber

Climber
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respectively. For simplicity, the PSE is assumed to have two tethers, and the physical properties of 

the tether material of PSE are listed in Table.1, and other parameters will be given in the simulation 

part. 

 

Table 1  Physical properties of tether 

Parameters Values 

Number of parallel tethers 2 

Material density of tether (kg/m3) 1440 

Elastic modulus of the tether (109N/m2) 72 

Cross-section area (m2) 2.0×10-6 

 

Table 2  Cases with simultaneous movement of climbers 

Name Motion of climber (Tether 1) Motion of climber (Tether 2) 

Case A Upward Upward 

Case B Downward Downward 

Case C Upward Downward 

Case D Downward Upward 
 

A. Effect of parallel tethers 

In this section, the effect of parallel tethers influencing on the dynamic response of PSE is 

investigated. The numerical simulations are carried out at two scenarios, where climbers are 

supposed to move simultaneously in the first scenario and climbers are supposed to move with a 

time delay in the second scenario. Each tether has one climber only, and the climber is assumed to 

move along the tether at a constant speed 50 m/s. The PSE is assumed orbiting the Earth in a 

circular orbit initially, and the altitude of center of mass of PSE is 43164 km. The climber is 

supposed to move from a rest situation instantly, where the libration angle and velocity are zero. 

The physical parameters of PSE are used, L = 1000 km, 
710  mm kg=

 , 
10000 sm kg=

 , 

1500 cm kg=
. As listed in Table 2, both upward and downward transfer motions of climbers are 
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considered. The initial position of climber is locating 0.10L  away from the end spacecraft. In this 

section, each tether is discretized into two variable-length elements without consideration of 

adding and subtracting of nodes, which leads the degrees-of-freedom of the PSE model is constant. 

The numbering of element starts from left tether to right tether, and it starts from up to upper to 

bottom in each tether. The element is counting consecutively. The time-step size is 0.001 s.  

In the first scenario, four cases are carried out as listed in Table 2, where all the climbers move 

simultaneously. To investigate the effect of parallel tethers influencing the dynamic response of 

PSE, the results of PSE with parallel tethers are compared with results of PSE with a single tether. 

First, the comparison results for cases A and B are shown in Fig. 4-5 and Figs. 6-7, respectively. 

It can be easily found that the libration angles of the comparison results match very well as 

expected. It shows the difference of libration angles between the parallel-tether and single tether 

can be ignored when the climber’s trajectories are the same. Furthermore, the same tendency of 

the variation of geometrical configuration of PSE is observed, seen Figs. 5 and 7. Second, the 

comparison results for cases C and D are shown in Figs.8-9 and Figs. 10-11. A significant 

difference is observed from the results of PSE with parallel tether comparing with the results of 

single tether when the movement directions of two climbers of each tether are opposite. For 

example, as shown in Figs. 8 and 10, the difference in the libration angles increases dramatically 

as times going on. Two reasons can be attributed, (i) the Coriolis forces of moving climbers are 

opposite (ii) the reaction forces caused by the rigid structure connecting two tethers. For example, 

as shown in Figs. 8 and 11, the variation of tension of PSE with transverse connecting structure 

varies different from the results of single tether. Because the two tethers interact with each other 

through the connecting structure. The same phenomenon is found by observing geometrical 

configuration of PSE, see Figs. 9 and 11. For example, the distance between two parallel tethers 
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increases for case C. however, for the case D, the distance decreases until two tethers tangle 

together. The tangling of two tethers should be stopped to happen from the design viewpoint. The 

reason is that the direction of Coriolis forces of two moving climbers is the same and point outward 

direction. For the case D, they are opposite and point inward direction. It reveals a fact, from the 

viewpoint of avoiding of tether collision, the movement direction of climber for PSE with parallel 

tethers is already determined once the rotational direction of PSE is determined. For example, the 

rotation axis of PSE is points to the positive Z-axis direction, the climber of left tether should be 

designed to move upward, and the climber of right tether should be designed to move downward.  

 

Fig.  3 Comparison results of libration angles of PSE in case A. 
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Fig.  4 Geometric configuration of PSE in case A 

 

 

Fig. 5  Comparison results of libration angles of PSE in case B. 
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Fig. 6  Geometric configuration of PSE in case B. 

 

 

Fig. 7  Comparison results of libration angles of PSE in case C. 
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Fig. 8   Comparison results of tension in case C.  



15 

 

 

Fig. 9  Geometric configuration of PSE in case C. 

 

 

Fig. 10  Comparison results of libration angles of PSE in case D. 
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Fig. 11  Comparison results of tension in case D. 

 

 

Fig. 12  Geometric configuration of PSE in case D. 
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In the second scenario, the climbers are supposed to move non-simultaneously. From simplicity, 

considering a time delay between climbers. As listed in Table 3, another three numerical 

simulations are carried out. For simplicity, the climber of left tether moves firstly, after 200 

seconds, the climber of the second tether start to move. All the other parameters and initial 

conditions are the same as the cases A, B and C. The results are compared with the results of the 

cases A, B and C. 

As shown in Fig. 13, the difference in the libration angles of PSE is not obvious at the start 

stage. However, the difference becomes noticeable as times going on. The same phenomenon can 

be observed from the geometric configuration of PSE as shown in Fig. 14. The reason for this 

phenomenon is that two tethers interact with each other caused by the non-simultaneously motions 

of climber.  

In this section, we can conclude that dynamic behavior of PSE with parallel tethers is the same 

as the results of single tether when the motion of climber of each tether are the same. On the 

contrary, the noticeable difference in the dynamic behavior of PSE is found due to the interaction 

between two tethers when the motions of climber of each tether, including the movement direction 

and the time shift, are different. 

Table 3  Cases with non-simultaneous movement of climbers 

Name Motion of climber (Tether 1) Motion of climber (Tether 2) 

Case E Upward Upward (200 s later) 

Case F Downward Downward (200 s later) 

Case G Upward Downward (200 s later) 
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Fig. 13  Comparison results of libration angles of PSE considering time delay between two 

climbers. 
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Fig. 14  Comparison results of Geometric configuration of PSE considering time delay between 

two climbers 

 

B. Effect of tether discretized scheme 

In this section, the effect of tether discretization scheme on the dynamic response of PSE of parallel 

tethers is investigated. Here, each tether has one climber only, and the physical parameters, initial 

conditions, and motion of climber are set the same as Case C. As listed in Table 4, one tether was 
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discretized into two, four, six, eight, and twelve elements, and the other tether was discretized into 

the same element. Therefore, the total number of elements of PSE is double time of one tether. To 

observe the trend of convergence due to the discretization scheme, a new parameter is defined to 

show the difference in the position of climbers 

( ) ( ) ( )
2 2 2

, , , , , ,

,
2 2 2

, , ,

100%
c k c j c k c j c k c j

j k

c j c j c j

X X Y Y Z Z
R

X Y Z

− + − + −
= 

+ +
 with subscripts j, k =4, 8, 12, 18, and 24 

(j ≠ k) representing the different discretization schemes of PSE. 

First, the tethers are discretized into different element to investigate the effect of different 

discretization scheme, and the climbers are keeping still. The time step size is 0.001 s and the 

simulation time is 100 s. The results of the ratio ,j kR  are listed in Table 5. It can be easily seen 

that the difference in the ratio R decreases as the number of elements increases. For example, as 

listed in Table. 5, The R16,24 is several times smaller than the R4,8. However, the computational cost 

increases significantly for the Case J, however, the accuracy doesn’t improve a lot. Thus, after the 

tradeoff analysis between the computational cost and accuracy, the PSE is discretized into sixteen 

elements with eight elements of each tether in the following simulations.  

Second, as presented in section 2.7, the process of merging and dividing of elements occurs if 

the tether is discretized into more than two elements. Accordingly, the degree-of-freedom of the 

PSE model varies. For the PSE with parallel tethers, the setting of control parameters is different 

from the setting parameters of PSE with single tether [12, 13]. To avoid the processes of dividing 

and merging of elements of two tethers happen simultaneously, the standard length  ( ), 1,2s jL j =

are chosen slightly different for two tethers. For the case J, ,1 12850 sL m=  and ,1 15350 sL m= , 

Other control parameters of the process of merging and dividing of element are set the same for 
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both two tethers, such as, , ,1.65max j s jLL = , ,min, 0.49j s jL L= , and 
2

, 10  e j m −= ( 1,2j = ). The 

comparison results of cases J and C are shown in Figs. 15 and 16. As shown in Fig. 15, it can be 

easily found the difference in the libration angles between Case C and Case J is obvious. Because 

the transverse motion of tether is included in the multiple elements tether model. The same 

phenomenon can be observed from the geometric configuration of PSE, see Fig. 16. It indicates 

the multiple elements tether model is more accurate to display the variation of PSE geometric 

configuration. Moreover, it is noticed that the two tether of PSE collides together that should be 

avoided. It indicates that the simultaneous optimization algorithm should be employed for the 

climbers to avoid the collision of tether.  

In this section, it can be concluded that the tether model with multiple elements should be used 

to describe the geometrical configuration of PSE accurately, and the simultaneous optimization 

algorithm should be adopted to collision of tether. 

 

Table 4  Number of elements of each tether 

Name 
Number of element 

(Left tether) 

Number of element 

(Right tether) 

Case H 4 4 

Case I 6 6 

Case J 8 8 

Case K 10 10 

 

Table 5. Ratio of position of climbers between different discretization schemes 

Time (s) Ratio R4,8 (%) 

(climber 1) 

Ratio R8,12 (%) 

(climber 1) 

Ratio R12,16 (%) 

(climber 1) 

Ratio R16,24 (%) 

(climber 1) 
10 4.38E-06 4.58E-07 1.21E-06 5.71E-08 

20 1.69E-05 1.78E-06 8.22E-07 2.18E-07 

30 3.69E-05 3.83E-06 2.43E-07 4.57E-07 

40 6.33E-05 6.37E-06 4.57E-07 7.43E-07 

50 9.44E-05 9.14E-06 1.20E-06 1.05E-06 

60 1.28E-04 1.19E-05 1.92E-06 1.34E-06 

70 1.63E-04 1.43E-05 2.57E-06 1.61E-06 
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80 1.96E-04 1.63E-05 3.09E-06 1.82E-06 

90 2.26E-04 1.77E-05 3.48E-06 1.98E-06 

100 2.51E-04 1.86E-05 3.73E-06 2.08E-06 

Time (s) Ratio R4,8 (%) 

(climber 2) 

Ratio R8,12 (%) 

(climber 2) 

Ratio R12,16 (%) 

(climber 2) 

Ratio R16, 24 (%) 

(climber 2) 

10 3.71E-05 3.89E-06 1.32E-05 4.85E-07 

20 1.50E-04 1.52E-05 1.65E-05 1.85E-06 

30 3.31E-04 3.26E-05 2.14E-05 3.89E-06 

40 5.70E-04 5.44E-05 2.74E-05 6.35E-06 

50 8.55E-04 7.80E-05 3.38E-05 8.97E-06 

60 1.17E-03 1.01E-04 4.01E-05 1.15E-05 

70 1.50E-03 1.22E-04 4.56E-05 1.38E-05 

80 1.81E-03 1.39E-04 5.01E-05 1.56E-05 

90 2.10E-03 1.51E-04 5.32E-05 1.69E-05 

100 2.34E-03 1.58E-04 5.48E-05 1.76E-05 
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Fig. 15  Comparison results of libration angles of Case C and J (a) α1,1 (b) α2,1 (c) α1,2 (d) α2,2 

 

 

Fig. 16  Geometric configuration of PSE of Case C and J. 

 

C. Effect of multiple climbers of each tether 

In this section, the effect of multiple climbers influence on the dynamic response of PSE is 

investigated. The physical parameters, initial conditions, and the tether discretization scheme are 

set the same as in case J, except the parameters of climbers. One simulation case is conducted with 

each tether having two climbers with the same mass (half of mass of climber in Case J). As shown 
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in Fig. 17, the distance between two climbers of each tether is 10 km. The comparison results are 

shown in Figs. 18-20.  

As shown in Figs. 18, it is easily found the difference in the libration angles between the 

comparison cases increases as the times going on. This is caused by the difference in the Coriolis 

forces of multiple climbers. As shown in Figs.18(a) and (d), it is seen that the amplitude of libration 

angle increases for the case J. It indicates the multiple climbers belong to each other without proper 

time shift may aggravate the libration motion of PSE. Therefore, the phase shift between each 

climber needs to be designed and optimized. For the case L, there is a high frequency of oscillation 

motion caused by the short distance between climbers, see Fig. 18(e). The same phenomenon can 

be observed from the geometrical configuration of PSE. Moreover, as shown in Fig. 19, it is found 

that the two tethers collide each other. It shows the control strategy needs to be explored to avoid 

the collision of tethers.  

 

Fig. 17  The initial mesh of PSE between Case J and Case L. 
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Fig. 18  Comparison results of libration angles of PSE in Cases J and L. 
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Fig.  19  Comparison results of Geometric configuration of PSE in Cases J and L. 

 

IV. Conclusion 

A novel concept of partial space elevator with parallel tethers and multiple climbers is proposed 

to increase the payload transfer efficiency. A high-fidelity and high-accuracy model of partial 

space elevator with parallel tethers is developed by the nodal position finite element method in 

framework of arbitrary Lagrangian-Eulerian.  First, the concept of parallel tethers impacting on 

the dynamic response of PSE is investigated through the transient motion of climbers, the 

movement direction and time delay between climber. It is found that the tethers collide each other 

when the movement direction of climber is opposite. Therefore, for the safety operation of PSE 

with parallel tethers, the trajectories of climbers should be optimized to avoid the collision of 

tether. Second, the transient motion of multiple climbers of each other impacting on the dynamic 

response of PSE is studied, it is also found the tethers collide each other. Moreover, it is found the 
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multiple climber may aggravate the libration motion when the time shift between each climber is 

not well designed.  
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