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Abstract: This paper proposes a novel integrity monitoring scheme against Global Navigation 

Satellite Systems (GNSS) fault for civil aviation navigation. The main contributions are (a) 

developing an efficient user algorithm that integrates Fault Detection and Exclusion (FDE) 

functions, and (b) deriving the analytical methods to quantify its corresponding integrity risk. The 

intended application of the new scheme is Advanced Receiver Autonomous Integrity Monitoring 

(ARAIM), which is proposed by the United States (U.S.) and European Union (E.U.), and will serve 

as the next generation of the main aviation navigation means. In this new approach, the exclusion 

decision-making process is unified into the first layer detection step, thereby dramatically improves 

efficiency. The principle of this method is utilizing the multi-dimensional parity vector projections 

in parity space to extract the information of faults. In this work, we derive the projection matrix for 

single satellite failure modes, establish the mechanism for determining exclusion subset based on 

the projection magnitudes, and rigorously account for the false exclusion probabilities in the 

integrity risk quantification. The feasibility of the algorithm is verified and validated using Monte-

Carlo simulations, and the performance is analyzed by evaluating the integrity risk. It is shown that 

the new FDE scheme can efficiently and effectively exclude the faulty satellites as desired, while 

achieving promising navigation performance.  

Keywords: Fault Detection and Exclusion, Integrity Monitoring, Global Navigation 

Satellite Systems, Continuity, Parity Space 

Introduction 

The safety critical aviation has stringent requirements on navigation systems. To quantitively 

analyze their performance, the International Civil Aviation Organization (ICAO) has defined 

specific metrics for different navigation methods [1]. Among these metrics, integrity directly relates 

to operation safety: it measures the trust that can be placed in the correctness of the information 

supplied by the navigation system. Loss of Integrity (LOI) in aviation navigation can result in 

catastrophic consequences, so integrity requirement is of the greatest significance during any phase 

of aircraft flight. In addition to integrity, navigation continuity is another crucial metric: it measures 

the capability of the system to perform its function without unscheduled interruptions during the 

intended operation. For the cases where alternative navigation tools are not available, Loss of 

Continuity (LOC) can lead the aircraft to be left without means of navigation, which is another 

severe threat to safety. 

 

After decades of worldwide development, Global Navigation Satellite Systems (GNSS) has become 

the first choice to solve many navigation problems today. This is especially the case in aviation 

community, because the legacy air navigation capability is limiting the air traffic growth [2]. Given 

the imperious demand for new technology in aviation, and given its historically consistent and 

reliable performance, GNSS is expected to significantly improve aviation navigation performance. 

However, GNSS measurements are vulnerable to faults, including satellite and constellation failures 

[3], which can potentially lead to major integrity threats to the users. GNSS service can also be 

interrupted by many sources including false and/or true fault detection (FD), satellite outages, etc. 

[4-6]. Such interruptions can significantly impact navigation continuity.  

 

To resolve these issues, a number of research effort has been put into developing GNSS 

augmentation techniques, and the outcomes have been serving aviation [7-9]. In a typical 

augmentation system, two fundamental capabilities must be enabled: real-time FD test and Integrity 

Risk (IR) evaluation. Among those systems, Receiver Autonomous Integrity Monitoring (RAIM) 

has become operational in the mid-1990s as a backup navigation tool to support aircraft en-route 

flight using GPS only [10, 11]. The principle of RAIM is exploiting redundant measurements to 
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achieve self-contained FD at the user receiver [12]. However, due to the limited satellite redundancy 

from a single constellation, RAIM is only able to provide limited availability, and can only support 

operations with less stringent navigation requirements.  

 

Future multi-constellation GNSS has been foreseen to provide dramatically increased measurement 

redundancy. Four constellations including GPS (U.S.), GLONASS (Russia), Galileo (E.U.) and 

BDS (China) are expected to finish their modernizations and/or full deployments in the near term 

[13], which will provide many more satellites in view than we have available today using GPS alone. 

In addition, nominal measurement errors will be significantly reduced using dual-frequency signals, 

which will remove the largest error source – ionospheric delay. These revolutionary developments 

in GNSS, together with important advancements in the RAIM concept, will open the possibility to 

independently support aircraft navigation using GNSS, from en-route flight towards final approach 

to landing, with minimal investment in ground infrastructure. Therefore, considerable effort has 

been expanded, especially in the U.S. and the E.U., to develop ARAIM Fault Detection and 

Exclusion (FDE) methods to ensure high navigation integrity and continuity [14-16].  

 

The current ARAIM research activities are led by a joint Working Group (WG) of the U.S. and E.U., 

i.e, WG-C, and they have been focusing on the dual-constellation scenario using GPS and Galileo 

[16]. Because ARAIM will operate as a main navigation means, it must provide a higher continuity 

performance level as compared to traditional RAIM. To reduce the continuity risk caused by FD 

events, Fault Exclusion (FE) function needs to be implemented for ARAIM [17-19]. Therefore, 

designing a feasible FE scheme to autonomously identify and exclude the faulty Space Vehicle (SV) 

is a key research aspect of ARAIM. However, the currently proposed FE methods are all based on 

the tradeoff between continuity and integrity, which can only improve continuity by a limited 

amount while degrading the integrity monitoring capability [17]. In addition, those existing FE 

algorithms require exhaustive searching processes followed by a second layer detection test, which 

results in significantly high computational load. This is especially the case when more than two 

constellations are employed, because the number of monitored SV subsets can increase 

exponentially [20]. 

 

In response, this paper proposes an efficient FDE scheme that integrates two separate functions. 

Even though the new scheme is established here based on ARAIM, it can also be extended to other 

applications such as Ground Based Augmentation System (GBAS), Satellite Based Augmentation 

System (SBAS) or multi-sensor integrated navigation systems. The principle of this approach is 

utilizing the relative magnitudes of the parity vector projections to extract the fault information, 

thereby determines the final exclusion option. Because the projection matrices of each fault mode 

can be captured in the FD step, the searching step for exclusion candidates and the second layer 

detection tests are waived. Moreover, using the maximum projection, the exclusion option can 

always be made after an alert is triggered, so continuity is fully preserved. This is different from 

implementing a separate FE function, whose resulting continuity risk depends on the threshold 

setting [17]. The most challenging part of this work is quantifying the IR associated with the 

proposed scheme. At this early stage, we will focus on single SV fault mode only, and will rigorously 

account for the false exclusion probabilities in the quantification. The feasibility of the algorithm is 

verified and validated using Monte-Carlo simulations, and the performance is analyzed by 

evaluating the IR.   

 

The paper is organized as follows. Section II provides the fundamental knowledge of ARAIM FD, 

and introduces the parity space concept. Then, the new FDE scheme is developed in Section III, 

where the FDE zones are visually presented in parity space. In addition, a comparison between the 

new approach and the state-of-the-art FE algorithms is made, and the limitations of the current 

algorithms are addressed. Section IV develops the IR evaluation methodology associated with the 

new scheme, in which the derivations are specified step by step. Later in Section V, multiple analyses 

on FDE capabilities are carried out to demonstrate the performance of the proposed method. Finally, 

Section VI concludes this paper.  

Fundamentals of ARAIM FD 

The current ARAIM architecture was proposed by WG-C, and it had been evolving over time. In 

comparison with RAIM, the most innovative designs of ARAIM are (a) employing the Integrity 

Support Message (ISM) to provide assertions on the constellation performance [21], and (b) creating 

a new user algorithm to accommodate the dramatically increased measurement redundancy using 
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multiple GNSS constellations. As the most important outcome of WG-C, the ARAIM baseline 

Multiple Hypothesis Solution Separation (MHSS) user algorithm has been well defined and been 

widely recognized [15]. This section will take advantage of much of the relevant prior work, and 

provide detailed and comprehensive derivations of the MHSS, from the fundamental GNSS 

measurement equation to the final upper bound on IR and False Alert (FA). Moreover, the definition 

of parity space is described, the relationship between the parity vector and Solution Separation (SS) 

test statistics is established, and a simple measurement model is employed to visualize the FD 

process in parity space. 

Definition of SS Test Statistics 

This paper focuses on the ‘snapshot’ ARAIM, which uses Carrier-Smoothed-Code (CSC) 

measurements to estimate the user potion and clock bias. Let 𝑛 and 𝑚 respectively be the numbers 

of GNSS measurements and states, the measurement equation can be linearized and expressed as 

[12]: 

 = + +z Hx v f  (1) 

where 𝐳 is the 𝑛 × 1 measurement vector, 𝐇 is the 𝑛 × 𝑚 observation matrix that is composed 

of line-of-sight vectors and ones, and 𝐱 is the 𝑚 × 1 state vector. 𝐯 is the 𝑛 × 1 error vector 

which can be bounded using a normal distribution 𝐯 ~ 𝑁(𝐛, 𝐕). 𝐟 is the 𝑛 × 1 fault vector, where 

the elements are zeros if their corresponding measurements are Fault-Free (FF). 

 

Using a Least-Squares (LS) estimator, the state of interest in Equation (1) can be estimated and 

extracted as: 

 0 0
ˆ

rx = α S z , where 1

0 0

T −=S P H V , and ( )
1

1

0

T
−

−=P H V H  (2) 

In Equation (2), 𝐒0 is defined as system matrix, and 𝐏0 is the covariance matrix of the full state 

estimate 𝐱̂0. 𝛂𝑟 is a 1 × 𝑚 vector with the subscript ‘r’ identifying the rth element of 𝐱̂0. For 

example, 𝑟 = 3 corresponds to extracting the vertical component of the position estimate. If two 

constellations are employed, then: 𝛼3 = [0 0 1 0 0].    

 

The SS test statistics Δ𝑑 are defined in position domain, which are the differences between the full-

set position solution 𝑥̂0  and the subset solutions 𝑥̂𝑑  [12, 15]. Using similar notations as our 

previous work [19, 22], the normalized statistics can be expressed as: 

 0 0
ˆ ˆ
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− −
= = , for d = 1…n. (3) 

where the subscript d indexes the number of detection test statistics from 1 … n. Because the purpose 

of this work is to present the general idea, only single SV fault mode is considered throughout this 

paper. Therefore, the number of monitored fault modes is equivalent to the visible SV number n. 𝑥̂𝑑 

is the position estimate using satellites without the one in fault hypothesis d. The evaluation of 𝑥̂𝑑 

takes similar form as Equation (2), i.e., 𝑥̂𝑑 = 𝛂𝑟𝐒𝑑𝐳, except the elements associated with the fault 

mode are set to be 0 in the new system matrix 𝐒𝑑 [22]. 𝜀0 and 𝜀𝑑 are respectively the position 

estimate errors of 𝑥̂0 and 𝑥̂𝑑, i.e., 𝜀0 = 𝑥̂0 − 𝑥 and 𝜀𝑑 = 𝑥̂𝑑 − 𝑥, where 𝑥 is the true position of 

the user. [22] also proved that all the three variables of Δ𝑑, 𝜀0, and 𝜀𝑑 follow normal distributions. 

In this paper, their bounding biases are respectively noted as 𝜇∆𝑑
, 𝜇0, 𝜇𝑑, and their corresponding 

standard deviations are noted as 𝜎∆𝑑
, 𝜎0, 𝜎𝑑.  

 

In the detection step, the statistics in Equation (3) are compared with their corresponding thresholds 

𝑇𝑑, which are derived in the next subsection to achieve an allocated FA budget. If any of the statistics 

exceeds its threshold, i.e., if ⋃ |𝑞𝑑| > 𝑇𝑑
𝑛
𝑑=1 , then an alert is issued, indicating that a fault may be 

present: this event is labelled 𝐷0. Otherwise, if all test statistics are smaller than the thresholds, i.e., 

if ⋂ |𝑞𝑑| < 𝑇𝑑
𝑛
𝑑=1 , then there is no detection (event 𝐷̅0), and the operation continues. 

Evaluation of FA Probability and IR 

For ARAIM FD only, the probability of FA (𝑃𝐹𝐴) is the major contribution to the overall continuity 

risk, or probability of LOC (𝑃𝐿𝑂𝐶). And it can be expressed as [19]: 
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where 𝑃𝐻0
 is the probability of the FF hypothesis. To avoid confusion, it is worth clarifying that 

the subscript ‘0’ of 𝐻0 indicates the FF state, whereas the ‘0’ of 𝑥̂0, 𝜀0, 𝐷0 and 𝐷̅0 represent the 

use of all-in-view satellites. Similar to most detection problems, the detection thresholds of ARAIM 

are determined by limiting 𝑃𝐹𝐴 . Let 𝑃𝐹𝐴,𝑅𝐸𝑄  be the FA requirement allocated from the overall 

continuity risk budget 𝐶𝑅𝐸𝑄. To meet 𝑃𝐹𝐴 < 𝑃𝐹𝐴,𝑅𝐸𝑄, the FD thresholds can be computed as: 𝑇𝑑 =

𝑄−1 {
𝑃𝐹𝐴,𝑅𝐸𝑄

2 𝑃𝐻0
∙ ℎ⁄ }, where 𝑄−1 is the inverse tail probability function. 

 

Integrity is usually measured in terms of IR, which is the probability that an undetected navigation 

system error results in Hazardous Misleading Information (HMI). Using FD-only, no integrity threat 

other than missed detection could affect the system. So, the IR of FD-only is a joint probability of 

having a hazard and sending no alert (𝐷̅0), which can be written as and bounded by [12]: 
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In Equation (5), 𝐻𝐼0 represents the events of hazardous information existing in the full-set solution, 

i.e., |𝜀0| > ℓ, where ℓ is the Alert Limit (AL). 𝐻𝑖  accounts for FF condition (i = 0) and all the 

single SV fault hypotheses for i = 1, … n, and their prior probabilities are denoted as 𝑃𝐻𝑖
.  

SS Test Statistics in Parity Space 

The parity space representation is the most illustrative expression of the detection process using 

measurement redundancy. It had been introduced for Residual-Based (RB) RAIM in []. To get the 

parity vector, Equation (1) is first normalized by pre-multiplying 𝐕−
1

2 . Then the normalized 

measurement vector, observation matrix, noise vector and fault vector respectively become: 𝐳∗ =

𝐕−
1

2 𝐳, 𝐇∗ = 𝐕−
1

2 𝐇, 𝐯∗ = 𝐕−
1

2 𝐯 and 𝐟∗ = 𝐕−
1

2 𝐟. The (𝑛 − 𝑚)  ×  𝑛 parity matrix Q is obtained 

by taking the Singular Value Decomposition (SVD) of 𝐇∗ [23]. Let the following equation to be 

the SVD result: 
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
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 

S
H U V

0
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Defining 𝐔2
𝑇 as the parity matrix 𝐐, then the (𝑛 − 𝑚)  ×  1 parity vector 𝐩 is []: 

 ( )  = = +p Qz Q v f  (8) 

Moreover, [12] has proved the following relationships: 

 ( )n m m


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where 𝐒0
∗𝐕−

1

2 = 𝐒0, and 𝐈𝑛 is a 𝑛 × 𝑛 identical matrix. 

 

Given that Δ𝑖 = 𝛂𝑟(𝐒𝑖
∗𝐇∗𝐒0

∗ − 𝐒𝑖
∗)𝐳∗ and 𝐒0

∗ = 𝐒𝑖
∗𝐇∗𝐒0

∗ [22], Δ𝑖  can be expressed as: 
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The standard deviation of Δ𝑖  is equivalent to: 

 ( )0i
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Therefore, the relationship between 𝑞𝑖 and 𝐩 can be established: 
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In this work, 𝐰𝑖 is defined as “fault mode line” for 𝐻𝑖 . And the projection of the parity vector on 

this line is the corresponding normalized SS test statistic 𝑞𝑖.  

 
To visualize SS based FD in parity space, a simple measurement model is employed here. The 

observation matrix and the error model are respectively 𝐇 = [1 1 1]𝑇  and 𝐯~𝑁(𝟎3×1, 𝐈3). 

Three fault modes i = 1, 2, 3, corresponding to each measurement, are considered in this problem. 

Since there are two redundant measurements, this example can be easily demonstrated in a 2-D 

parity space.  

 

 
Figure 1.  Parity Space Representation of ARAIM FD. 

Figure 1 presents ARAIM FD process under fault hypothesis 𝐻1 , i.e., the fault is on line 𝐰1 

(highlighted red). The yellow arrow represents the parity vector, and its projections onto three fault 

lines are the associated normalized SS test statistics, i.e., Equation (12). The blue region on the right 

indicates no detection event 𝐷̅0, in which all the statistics are less than the thresholds. It has hexagon 

shape because the magnitudes of the thresholds are equal for all three 𝑞𝑖. In this example case, the 

parity vector lies outside of the no detection region, so there is a detection event.   

Development of the New FDE Scheme 

So far, we have described the ARAIM FD process, which only addresses the impact of FA events 

on continuity. In fact, because ARAIM will take use of multiple constellations, the heightened 

likelihood of encountering true FD events can significantly increase continuity risk. Therefore, to 

improve ARAIM continuity, an exclusion step must be implemented after FD, especially given that 

ARAIM will operate as a main navigation means [19].  

Two-Step Based FE Function Designs 

 
Figure 2.  Flow Diagram of a State-of-the-Art FDE Process. 
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Unlike the MHSS FD algorithm that is generally accepted, the currently proposed FE algorithms are 

mostly heuristic. Figure 2 shows the flow diagram of a typical FDE procedure, which is composed 

of three major steps including IR evaluation (labelled blue), FD function implementation (labelled 

green) and FE function implementation (labelled red). As the precondition of the whole process, the 

overall IR of the FDE function (𝐼𝑅𝐹𝐷𝐸) is computed and compared with the requirement 𝐼𝑅𝐸𝑄  at 

first. The receiver will proceed to the remaining steps only if 𝐼𝑅𝐹𝐷𝐸 < 𝐼𝑅𝐸𝑄. For continuity, the key 

design element is the exclusion step after detection, and the mechanism to determine which SV to 

exclude. In most of the current designs, the FE function consists of two steps: exclusion option order 

determination and final decision making. Figure 2 has listed three ways to array the exclusion 

candidates [17-19], whose goal is to develop an efficient route for the exclusion attempt. To make 

the final exclusion choice, a second layer detection test is employed to confirm the new satellite 

subset after exclusion is FF [17]. Following the order made in first step, multiple exclusion tests will 

be implemented from j = 1 to n. And the final decision (noted as 𝐸𝑗) is made only if there is no 

second layer detection event after excluding SV j.  

 

Although the two-step based FE function design has been widely proposed and discussed, it has 

several major disadvantages. First, its computational cost is extremely high, which may not be 

feasible for on-board ARAIM user receiver. This is due to the fact that carrying out the exclusion 

test requires reevaluating the position estimate and statistics using the second layer SV subsets, 

which doubles the computational load than only implementing a single FD function. In addition, it 

may take a number of iterations before the final exclusion decision can be made, and each iteration 

corresponds to going through one more FD process. Under the worst-case scenario when No 

Exclusion (NE) can be validated after testing all the candidates, the system will output an 

insignificant information while consuming a large amount of computation power. Given that the 

complexity of the MHSS FD algorithm has already caused issues [20, 24, 25], it is highly undesirable 

to add any additional computational load to the user. Other than the concern on computation, another 

major problem of the current FE function design is due to the tradeoff between continuity and 

integrity. According to the algorithm description [17], the continuity improvement is highly 

dependent on the threshold setting of the second layer test statistics. Although the continuity risk 

can be reduced by employing a larger threshold, it will also lead to a higher IR. For the cases when 

the continuity requirement is stringent, the resulting 𝐼𝑅𝐹𝐷𝐸 may exceed 𝐼𝑅𝐸𝑄 .   

Real-time Implementation of the Integrated FDE Scheme 

 

Figure 3.  Flow Diagram of the Integrated FDE Scheme. 

 

To overcome the shortcomings of the existing algorithms, our proposed method unifies the FD and 

FE functions into one process. As shown in Figure 3, the real-time implementation of the integrated 

FDE scheme is greatly simplified from the one in Figure 2. Using the new approach, the final 

exclusion decision can be directly made after an alert is triggered. Because the second layer FD test 

and the iteration steps are removed, the algorithm efficiency is dramatically improved. The basis for 

determining the excluded SV subset is utilizing the properties of the party vector projections in parity 

space. Under a single SV faulted condition, the mean of the party vector is along the fault mode line, 

and the deviation of the parity vector from this line is only impacted by the noise from other FF 

measurements. Therefore, the projection on the actual fault mode is expected to be the maximum, 

and that is why its corresponding SV subset is chosen to be excluded. Because the maximum 

projection can always be found, the exclusion attempt will never fail, which means the operation 

continuity can be fully preserved after a FD event occurs. According to our derivations in prior 
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section, the projections of single SV fault modes are equivalent to their normalized SS test statistics, 

so 𝑞𝑖 can be directly used to make the exclusion decision. This is captured by the solid purple arrow 

in Figure 3.  

 

 
Figure 4. Parity Space Representation of Existing (Left) and New (Right) FDE Approaches. 

 

Using the example introduced in prior section, the FDE procedures are visually presented in parity 

space in Figure 4. Because measurement 1 is faulted, the parity vector p will move along 𝐰𝟏 as the 

fault magnitude (i.e., 𝑓1) varies, with small deviations orthogonal to 𝐰𝟏 due to nominal noise on 

measurements 2 and 3. The left figure corresponds to the conventional FDE algorithm, where the 

exclusion zones are distinguished by multiple colors. The green band represents the Correct 

Exclusion (CE) event in which measurement 1 will be excluded. The red band results in Wrong 

Exclusion (WE) since measurement 2 and 3 will be excluded. The overlapping regions are labelled 

blue and purple, in which more than one exclusion options will pass the second layer detection test. 

Finally, the white areas capture the cases that NE can be made after testing all the exclusion options 

(𝐸̅). For this approach, the widths of those bands are set by the magnitudes of the exclusion threshold 

𝑇𝑒,𝑙, and the basis for determining the parity vector’s location is by comparing the second layer test 

statistics 𝑞𝑒,𝑙  with 𝑇𝑒,𝑙 [17, 19]. Therefore, Figure 5 (left) restates the fact that the computational 

cost to support the conventional FDE approach is significantly high because (a) it requires 

computing 𝑞𝑒,𝑙 and 𝑇𝑒,𝑙, and (b) it requires an iterative search to make the final exclusion decision. 

In addition, even if 𝐩 locates in the white regions, the algorithm will still consume the same amount 

of computational power. And if 𝐩 is in the blue or purple area, the probability of having a WE 

event is increased, which is highly undesirable for the users. In comparison to the conventional 

approach, the figure on the right presents our proposed integrated FDE scheme in parity space, where 

the CE region is labelled green and WE region is labelled red. Because the regions are distinguished 

by the magnitudes of 𝑞𝑖, their borders lie in the middle of two fault mode lines. Using the new 

approach, there is no overlapping regions nor NE regions, which restates the fact that exclusion 

decision can be immediately made by only using the information from the FD step, and continuity 

can be fully preserved.     

IR Quantification of the New FDE Scheme 

As pointed out in introduction section, IR evaluation is the key component of any GNSS 

augmentation system. It is also the most challenging part of this work, because the evaluation highly 

depends on how the FDE steps are implemented. As shown in the flow diagram of Figure 4, a priori 

IR evaluation is adopted in this approach. When computing the IR in real-time, the receiver does not 

know whether there is a FD or not, and which SV subset needs to be excluded. Therefore, all possible 

situations that cause integrity threats need to be characterized. As a result, the instantaneous 𝐼𝑅𝐹𝐷𝐸 

is identical to the predictive 𝐼𝑅𝐹𝐷𝐸, which is usually evaluated for offline analyses purposes, and 

both need to account for the risks introduced by the exclusion options [17, 19, 22]: 

 ( ) ( )0 0 0

1

, , ,
n

FDE j j

j

IR P HI D P HI D E
=

= +  (13) 

where 𝐸𝑗 denotes SV j is excluded, and 𝐻𝐼𝑗  indicates hazardous misleading information still exist 

even if the user position is estimated without using SV j, i.e., |𝜀𝑗| > ℓ. According to our new FDE 

scheme design, the SV that results in largest 𝑞𝑖  will be chosen to be excluded. Therefore, j 

corresponds to the maximum normalized detection statistic (𝑀𝐴𝑋𝑗). In the following derivations, 

𝐸𝑗  will be replaced by 𝑀𝐴𝑋𝑗 , which takes the following mathematical form: |𝑞𝑗| > ⋂ |𝑞𝑑|𝑛
𝑑=1 . 

With multiple fault hypotheses, Equation (13) can be expressed and bounded as: 
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  ( ) ( )0 0 0

0 1

max , , , , ,
i

i

n n

FDE i i j j i i H
f

i j

IR P HI D H f P HI D MAX H f P
= =

 
= + 

 
   (14) 

 ( ) ( )0 0 0

0 0 1

, , ,
i i

n n n

i H j j i H

i i j

P HI D H P P HI D MAX H P
= = =

 +   (15) 

In Equation (14), the actual fault vector 𝑓𝑖  of hypothesis 𝐻𝑖  can be fully characterized by its 

direction and magnitude [12]. The worst-case fault is obtained when the conditional 𝐼𝑅𝐹𝐷𝐸 for 𝐻𝑖  

(the summation over all exclusion options under hypothesis 𝐻𝑖) is maximized. However, directly 

evaluating IR using Equation (14) is almost impossible because (a) searching for the worst-case fault 

over all exclusion options is an arduous task, and (b) the correlations between the events in each 

exclusion option are complex. Therefore, in the upper bound of Equation (15), we have implicitly 

selected 𝑓𝑖 to maximize each term individually. In contrast, in Equation (14), a single fault mode is 

selected to maximize the sum of all the terms. Therefore, summing the maximized individual risks 

using Equation (15) always bounds the maximized summed risk in Equation (14). 

 

The first term of Equation (15) is 𝐼𝑅𝐹𝐷, whose evaluation has been given in Equation (6). Our 

attention is now turned to the second (double summation) term, which carries the cost of increased 

IR by implementing exclusion. We first define 𝐼𝑅𝐹𝐷𝐸,𝑖,𝑗 as the IR contribution after excluding 𝐸𝑗 

under hypothesis 𝐻𝑖 , and 𝐼𝑅𝐹𝐷𝐸,𝑖,𝑗 is classified into three categories: FF condition (𝑖 = 0), CE (𝑖 =

𝑗), and WE (𝑖 ≠ 𝑗). For FF hypothesis and CE event, because the resulting satellite subset after 

exclusion is FF, the position estimation error 𝜀𝑗 is expected to be significantly smaller than AL. 

Therefore, 𝐼𝑅𝐹𝐷𝐸,0,𝑗  and 𝐼𝑅𝐹𝐷𝐸,𝑖,𝑗
𝑖=𝑗

 can still be tightly bounded after eliminating all other 

information: 

 ( ) ( ) ( )
0 0 00,0, 0 0 0, ,FDE j H Hj jj j HIR P HI D MAX H P P HI H P P H P=  =   (16) 

 ( ) ( ) ( ), 0, , ,
i i i

i j

jFDE i j i H i H jj i HjIR P HI D MAX H P P HI H P P H P
=

=  =   (17) 

To evaluate the IR associated with WE event, we employ the following bound: 

 ( ),

1 1

0, , , , ,
i i

i j

j d

j j

n n

FDE i j i H j d d j d i H

d d

IR P HI D MAX H P P q T q q H P



= =

 
 = =   
 
 

 (18) 

( ),
ij j i i HP q q H P     (19) 

In Equation (19), the information of 𝐷0 is ignored, and only the statistic of the actual fault mode is 

accounted. This is due to the fact that 𝑞𝑖 reflects the difference between a faulted position estimate 

and a FF estimate, which is expected to be the driving factor of the joint probability of Equation 

(18). According to our derivations in prior section, all of the three variables (𝜀𝑗,  𝑞𝑗 ,  𝑞𝑖 ) follow 

normal distributions with known mean values and standard deviations: 

 ( )2,j j jN   , where ( )j r j = +α S b f  and 
2 T

j r j r = α P α  (20) 

 ( ),1
jj qq N  , where ( )( )0j jq r j = − +α S S b f  and ( )2

0j

T

r j r = −α P P α  (21) 

 ( ),1
ii qq N  , where ( )0i iq r = +α S b f  and ( )2

0i

T

r i r = −α P P α  (22) 

Due to the term of |𝑞𝑗| > |𝑞𝑖|, it is challenging to directly evaluate Equation (19). Instead, we 

employ an upper bound, which converts Equation (19) into a multivariate normal distribution 

problem. Let 𝐪  define as [𝑞𝑗    𝑞𝑖]
𝑇

, so 𝒒 ~ 𝑁(𝛍𝑞 , 𝚺𝑞) , where 𝛍𝑞 =  [𝜇𝑞𝑗
   𝜇𝑞𝑖

]
𝑇

, and the 

covariance matrix is 𝚺𝑞 =  [
   1         𝜎𝑞𝑗𝑞𝑖

2

𝜎𝑞𝑗𝑞𝑖
2          1   

]. Then, using the leftmost figure of Figure 5, the scenario 

of |𝑞𝑗| > |𝑞𝑖| can be visually illustrated in terms of q. The red line represents the mean values of 

𝐪 that changes as a function of fault magnitude. The impact of the nominal bias b is not addressed, 

so the red line passes the origin when the fault magnitude is 0. As a result, the probability of |𝑞𝑗| >

|𝑞𝑖| is equivalent to the probability of q locating in the blue regions of the leftmost figure. As shown 

in the dashed box of Figure 5, the principle of bounding Equation (19) is independently evaluating 
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the two blue areas. Let two new unit vector define as 𝐧𝟏 = [−
√𝟐

𝟐
,  

√𝟐

𝟐
] and 𝐧𝟐 = [

√𝟐

𝟐
,  

√𝟐

𝟐
], then 

the new variables in the two subfigures in the dashed box are respectively 𝑅1 = 𝐧1𝐪 and 𝑅2 =

𝐧2𝐪 , where 𝑅1 ~ 𝑁(𝜇𝑅1
= 𝐧1𝛍𝑞 , 𝜎𝑅1

2 = 𝐧1𝚺𝑞𝐧1
𝑇)  and 𝑅2 ~ 𝑁(𝜇𝑅2

= 𝐧2𝛍𝑞 , 𝜎𝑅2
2 = 𝐧2𝚺𝑞𝐧2

𝑇) . 

The deviation between the red line and the origin captures the worst-case impact of nominal bias b 

on the probability.  

 

 
Figure 5.  Graphical Illustration of the Upper Bound Derivation.  

 

Using the newly defined variables, the final upper bound of the IR associated with WE event is: 

 ( ) ( )( ), , 1 2, 0, , , 0, ,
i

i j

FDE i j j i i j i i HIR P R H f P R H f P 


   +    (23) 

Given the fault direction of each single SV fault mode, Equation (23) can be computed by searching 

for the worst-case fault magnitude that maximizes 𝐼𝑅𝐹𝐷𝐸,𝑖,𝑗
𝑖≠𝑗

. The correlations among 𝜀𝑗, 𝑅1 and 

𝑅2 are derived in Appendix, and their covariance matrices of the two equations are: 

 1

1 1

2 2

1 2 2

j j R

j R R

 

 

 
=  
  

Σ  and 2

2 2

2 2

2 2 2

j j R

j R R

 

 

 
=  
  

Σ  (24) 

As a result, the IR of the proposed integrated FDE scheme can be evaluated by plugging Equations 

(6), (16), (17) and (23) into Equation (15), and its final expression is: 

 

( ) ( )

( ) ( )

( ) ( )( )

0

0

0 0

1

0 1

1
1 21

, 0, , , 0, ,

i i

i
i j

i
i j

n

H i i i H

i

n

j H j i Hn

n
j

j i i j i i

FDE

H

IR P H P P T H P

P H P P H P

P R H f P R H f P

  

 

 

=





=

=

  + + 

  + 
 

+  
 +   +   
 








 (25) 

Results 

With the theoretical methods being fully derived in prior sections, this section investigates the 

performance of the new FDE scheme. The analyses are respectively carried out from the perspective 

of computational efficiency, algorithm effectiveness and integrity. To clearly present the benefits of 

this approach, the new results are directly compared to the ones obtained using existing FDE 

methods.  

 

Table 1.  Numbers of Monitored SV Subsets. 

Constellations Conventional FDE 

Method 

Integrated FDE 

Scheme 

GPS + BDS 37 – 252 19 

GPS + BDS + Galileo 124 – 2315 63 

GPS + BDS + Galileo + GLONASS 1346 – 30929  675 

 

Because evaluating the SS test statistics requires estimating the position solutions using SV subset, 

the ARAIM computational load can be reduced by reducing the number of monitored satellite subset 

[20, 24, 25]. Table 1 shows the SV subset numbers in terms of two, three and four constellations. It 
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is conservatively assumed that the visible SV number from a single constellation is 9 for GPS and 

BDS; 8 for Galileo and GLONASS. Depending on how the exclusion option order is arrayed, the 

subset number using the conventional FDE approach is in a range. The results suggest that using the 

proposed FDE scheme can significantly improve the computational efficiency, especially when 

multiple exclusion attempts need to be implemented using the conventional FDE algorithm.  

 
Figure 6.  Effectiveness of the Integrated FDE Scheme. 

 

Figure 6 verifies the effectiveness of the proposed FDE scheme. A Monte-Carlo simulation with 107 

trials is performed, and GPS almanac is employed to simulate the SV positions. Figure 6 corresponds 

to the case where the user is located at Shanghai, China, with 7 GPS satellites in view. To simulate 

the faulted condition, a measurement fault with the varying magnitude from 0 m to 50 m is injected 

to SV 4. The results are presented in terms of the probability of CE (left) and NE (right). Because 

the performance of the conventional FDE methods depends on the allocated continuity budget 

𝑃𝐹𝐷𝑁𝐸,𝑅𝐸𝑄, three scenarios are considered, and their results are respectively labelled green, blue and 

black in Figure 6. The red solid lines in both figures correspond to the newly proposed FDE scheme.  

By using the new approach, maximum CE probabilities can always be obtained without any 

continuity interruptions, which surpasses the conventional methods. 

 
Figure 7.  IR of the Integrated FDE Scheme over a Day. 

 

Figure 7 presents the IR associated with the integrated FDE scheme. Using the same GPS almanac 

as the one for Figure 6, the results are evaluated over a one-day period at Shanghai, China. According 

to the figure, the red line is in between the green and blue lines, which indicates that new FDE 

approach may lead to larger IR than the conventional approach in some special cases. However, 

unlike the conventional approach whose IR reduction comes at the cost of increased continuity risk, 

the IR of our proposed FDE scheme is fixed. Therefore, the operational continuity can always be 

fully preserved using the integrated FDE scheme, which is the key advantage of this method.   

Conclusion 

This paper proposes a novel integrity monitoring scheme against GNSS fault for civil aviation 

navigation. The main contributions are (a) developing an efficient user algorithm that integrates FDE 

functions, and (b) deriving the analytical methods to quantify its corresponding IR. In this work, the 

projection matrix is derived for single satellite failure modes, the mechanism for determining 

exclusion subset is established based on the projection magnitudes, and the false exclusion 

probabilities are rigorously accounted in the IR quantification. By using the new approach, the 

computational load of the user is significantly reduced, and the effectiveness of correctly excluding 

the faulted SV is improved. In addition, full continuity can be preserved using this approach, while 

achieving promising IR that is in the same order of the magnitude as the conventional FDE methods. 
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In the future work, multiple fault modes will be accounted, and the scheme will be validated under 

baseline ARAIM simulation scenarios.  

Appendix 

This appendix develops the correlations among the variables in Equation (23). In the following 

derivations of the variance, the mean values of the variables are implicitly removed. 

   ( ) ( )2

0 0

1 1
,

j

j j

T T T T T

j q j j r j r r j j r r j rq 
  

=  = −  = − α S VS α α S VS α α P P α  (A.1) 

   ( )2 1

0 ,

1
,

i

i

T

j q j i r j j i i rq 


−



=  = − α P P P P α  (A.2) 

The elements in the covariance matrices of Equation (24) are obtained using the following linear 

combinations: 

 
1

2 2 2

1 j i

T

j R j q j q   =
 

n  and 
2

2 2 2

2 j i

T

j R j q j q   =
 

n  (A.3) 
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