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• Simplified computational modelling of fans and compressors

• Investigation into design and performance of turbomachines in non-uniform flow

• Aeroacoustics of turbomachinery and unsteady internal flows

Aerospace Propulsion Research at University of Windsor
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Future Aircraft May Utilize Embedded Propulsion
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• Many fans/compressors must operate continuously with inlet flow 

distortion

Inlet Distortions Affect Fan/Compressor Performance
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Boundary Layer Ingesting

(BLI) Turbofan Engine
Turboprop Engine Compressor

From Wikimedia Commons/Emoscopes



No Frame Of Reference In Which Flow Is Steady

Non-Uniform Inflow Results in Unsteady Flow for Rotor
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• Effects of distortion studied extensively, but normally time-consuming

– Experimental rig development

– Computation of full-wheel, unsteady flow solutions

Scaling of Fan Performance as Distortion Altered Not Well Known

Past Studies Focus on One or Few Distortions
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From Fidalgo, Hall, and Colin (2012)

From Gunn and Hall (2014)



Identify mechanisms by which fans/compressors 

interact with flow distortions

Numerically assess how performance of axial 

fan/compressor stages are affected by various types 

and severity of inlet distortion

• At design flow coefficient and corrected speed

Objectives
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• Stagnation temperature and pressure distortions fundamentally interact 

with fans/compressors in same way

– Flow redistributed to alleviate upstream velocity distortion

• Result:

– Attenuation of mass flux distortion for varying stagnation pressure

– Amplification for varying stagnation temperature

Key Messages – Mechanisms
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• At low speed, changes in performance are approximately additive for 

distortions of:

– Different inlet flow properties

– Different severity for a single inlet stagnation quantity

• At high speed, increases in distortion severity lead to more than additive 

increases in performance changes

• Changes in performance for swirl distortion do not scale linearly with 

severity

Key Messages – Performance Scaling
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• Non-axisymmetric throughflow model of turbomachinery blade rows

– Steady flow model

• Loss modelling a work in progress – so no discussion of efficiency

• Momentum and energy source terms added to governing equations

Steady flow model + reduced grid resolution reduces computational 

cost by 2-3 orders of magnitude

Approach Uses Source-Term-Based Fan Model
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• Turbomachinery blades replaced with momentum/energy terms

Throughflow Model Generates Turning and Pressure Rise
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Adapted from Brand (2013)

Volumetric source terms



Blade Loading Force Scales with Local Deviation
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Model by David Hall

(MIT)



Normal Force Model Modified for use in Compressible Flow
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Adjusted to yield correct relative flow

angles (captures incidence effects)

Adjusted to yield correct

outlet tangential velocity

(captures work input)



• Local rotor reduced frequency

< 0.1 for all distortions considered

• Additionally require that distortion wavelength is large compared to blade 

pitch

Approach Captures Distortion Transfer for f
red

 << 1
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• Model of stage used in experimental work at Whittle Laboratory

– Gunn, Tooze, Hall, and Colin (2013)

– Gunn and Hall (2014)

– Perovic, Hall, and Gunn (2015)

• Rotor and stator camber distributions estimated based on radial 

distributions of leading/trailing edge metal angles

Low Speed Fan Stage Studied
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1 2 3 4 5

Inflow boundary (in) RotorStator Outflow boundary



• NASA rotor 67 + stator

• Blade camber surfaces extracted from detailed blade geometry

• Both models: design work coefficient predicted to within 2% of experiment

High Speed Compressor Stage Studied
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Rotor
Stator



• Vertically stratified (BLI fan)

– Stagnation pressure variations

• Radially stratified (turboprop 1st compressor stage)

– Stagnation temperature, stagnation pressure, and swirl variations

Vertical and Radial Distortions Considered
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• Quadratic velocity profile in “boundary layer”

Vertically Stratified Stagnation Pressure Distortions
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Radially Stratified Stagnation Temperature/Pressure Dist.
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• Emulates radially-varying work input from propeller



Radially Stratified Swirl Distortions (Low-Speed Fan Only)
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• Local diffusion factor approximated as:

                       Changes:

• Higher local diffusion → increase in local entropy generation → 

contribution to reduced efficiency

Diffusion Factor Used as Proxy for Entropy Generation
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Inflow boundary (in) RotorStator Outflow boundary



• Stagnation pressure distortion: mechanism well understood

– Velocity distortion attenuated by nature of fan/compressor characteristic

– Upstream flow redistribution yields relative flow angle changes which 

give rise to changes in diffusion factor

• Stagnation temperature distortion: new insight into interaction 

mechanism

– Velocity and mass flux scale differently:               ,

– Velocity distortion attenuation yields amplification of mass flux 

distortion

– Changes in diffusion factor governed by variable mass flux

Stagnation Temperature vs. Stagnation Pressure Distortion
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Stagnation Temperature Evolution
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Far upstream Rotor inlet



Velocity Distortion Attenuated
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Far upstream Rotor inlet



Mass Flux Distortion Amplified

25

of 35

Far upstream Rotor inlet



Changes in Diffusion Factor Related to Mass Flux Distortion
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Rotor inlet Rotor inlet



• For individual distortions, changes in diffusion:

– Scale linearly with distortion severity for:

• Vertically-stratified stagnation pressure distortions

• Radially-stratified stagnation temperature distortions

– Do not scale linearly for:

• Radially-stratified swirl distortions

• Variations in geometric location of stagnation quantity distortions

• For combined distortions, changes in diffusion for the combination can 

be predicted by summing the effects of the constituent distortions

Overview of Distortion Study Results: Low Speed Fan
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• Changes in diffusion well-predicted for V
min

/V
max

 = 0.25 by summing 

effects from V
min

/V
max

 = 0.50 and V
min

/V
max

 = 0.75 cases

Vertically-Stratified p
t
 Distortion: Linear Effect of V

min
/V

max
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Rotor, 75% span, d/2R
in
 = 0.5



• Altering depth of distortion produces linear changes in incidence and 

diffusion factor

Radially-Stratified T
t
 Distortion: Linear Effect of T

t,min
/T

t,max
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Rotor, 90% span, DR/R
in
 = 0.5

Hypothesized mechanism: mass flux variation due to density change



• Vertically-stratified, d/2R
in
 = 1.0, V

min
/V

max
 = 0.5, T

t,min
/T

t,max
 = 0.9

• Diffusion changes for combination can be predicted accurately

Combined Stagnation Pressure and Temperature Distortion
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Rotor, 90% span



• Stagnation pressure: 

velocity and mass flux vary 

in the same way

• Stagnation temperature: 

velocity and mass flux vary 

opposite ways

• Impact of distortions with 

same spatial distribution 

~180° out of phase

Distortions Out of Phase due to Impact on Mass Flux
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~180°

Rotor, 90% span



• Source-term-based blade row model enabled numerical investigation of 

scaling of impact of inlet flow distortion for a low-speed fan

• Changes in diffusion for distortions of inlet stagnation quantities scale 

linearly with distortion severity

• Changes in diffusion for combinations of distortions of different inlet 

parameters with the same spatial variation can be predicted by summing 

effects of individual distortions

• Effects of other aspects of distortions considered scale non-linearly

Summary – Low-Speed Fans
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• Qualitative behaviour similar to low-speed fan

• Quantitative: increases in distortion intensity lead to:

– linear increases in mass flux and flow angle distortions

– more than linear increases in diffusion factor distortion

High-Speed Compressor: Overall Findings

33

of 35



High Speed: Changes in Diffusion Factor Scale > Linearly
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Rotor, 90% span

Linear scaling Non-linear scaling



• Mechanism for interaction of a stagnation temperature distortion with a 

fan/compressor rotor identified

– Mass flux distortion amplified for variable stagnation temperature

• Low-speed fan: distortion effects behave linearly for same spatial 

distribution of quantities at inlet

• Transonic compressor: distortion intensity increase leads to more than 

linear changes – scaling breaks down

Conclusions
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