Turboengine noise prediction: present and future

S. Moreau

Département de Génie Mécanique Université de Sherbrooke, QC, Canada

Background

- Fan alone or rotor-stator stage
- Low to high Mach and Reynolds numbers
- Low number of blades
- Regulations more and more stringent

Propulsion systems (turboengines)

- Rotor-stator or rotor-rotor stage
- High Mach and Reynolds numbers
- High solidity
- Dominant noise at approach: soon to be the main source always (UHBR)

NASA ANCF test case

[1] Alan R.D. Curtis. Active control of fan noise by vane actuators. Technical Report NASA/CR–1999-209156, NASA, Glenn Research Center, May 1999.

- Up to 28 stators, 168 actuators
- Upstream and downstream rings of sensors

[2] Daniel L. Sutliff. The Advanced Noise Control Fan. Technical Report NASA/TM— 2006-214368, NASA, Glenn Research Center, Cleveland, Ohio

Excellent test case for tonal noise: directivities, modal decomposition for several stators
Instrumented blades
Results of active control with actuators on stator

NASA SDT test case

- Model of a modern turbofan bypass stage
- 22-inch (56 cm) diameter
- Hub-to-tip ratio = 0.5
- 22 blade rotor
- Several stator geometries
- Rotor speed: 7810 rpm

OGV	Operating conditions	Approach	Cut-Back	Take-Off	
54 vanes (baseline)					Fully available input data for running the model
					running the model
26 vanes					
26 swept vanes					Partially available input data for running the model

Unique broadband noise test-case (AIAA benchmark RC1-RC2)

Methods for fan noise prediction

Somputational Cost

Analytical methods for fan noise prediction

DIRECT approach

- + actual acoustic propagation
- high-order schemes

HYBRID approach

- + classical CFD solvers (even incompressible)
- + complex source geometries
- No feedback mechanisms
- Hypothesis on the propagation (no complex installation effects)

ANALYTICAL approach

- + classical CFD solvers (even RANS)
- simple source mechanism and geometry

Analytical model of noise radiation

Configuration

Infinite annular duct

Strip Theory

- Blade geometry describe by stacked strips
- Uniform axial flow/ strip

Acoustic analogy¹

- Sources are generated by the flow
- No acoustic feedback on sources
- G : Green's function tailored to problem

- Quadrupolar term neglected
- Viscous forces neglected
- Monopolar source omitted

$$p(\mathbf{x}, t) = \int_{-T}^{+T} \int_{S_p(t_0)} \frac{\partial G(\mathbf{x}, t \mid \mathbf{x}_0, t_0)}{\partial x_{0i}} f_i dS(\mathbf{x}_0) dt_0$$

Acoustic Sources: pressure fluctuations f_i on the blades

Analytical model of unsteady loading

Strip theory (except mode matching)

- Stage unwrap at each radius
- 2D profiles or rectilinear cascades
- Infinite flat plates w/o thickness, camber
- Mean inviscid flow parallel to flat plate
- Kutta condition at trailing edge

Low solidity: isolated profile

Unsteady lift computed using Schwarzchild theorem or Wiener-Hopf theory

Roger & Moreau, IJA 2010

High solidity: cascade effect

(Influence on neighboring blade on blade response)

Unsteady lift computed using Wiener-Hopf theory (3D rectilinear cascade)

Posson et al., JFM 2010

Noise sources in axial turbomachine

- Upstream distortion/turbulence: asymmetry of the inlet flow, flow detachment, duct junctions, protection grids...
- Potential sources: struts, any asymmetry in the geometry
- Other sources: vortex shedding (blunt trailing edge), boundary layer detachment

Results on SDT reference case

Red: 3D Posson model; Vert: 2D Ventres response+ turbulence spectrum of Nallasamy-Envia;

Blue: Ventres response 2D + turbulence spectrum of Liepmann

Extension of BBN model with swirl

Significant effect of swirl in the low-mid frequency range On-going effort to include interstage liner effect

Future of fan noise prediction

Mode-Matching Technique in Bifurcated Waveguides (MMBW)

unwrapped cut of radius $r_0 = V h_M / (2 \pi)$

Needs:

- Fast-running prediction tools for sound generation and sound transmission mechanisms (unified theory)
- Eliminate strip theory (rectilinear discontinuities)
- Approach compatible with cascade/camber effect

Mode-matching technique:

- Field expansion in orthogonal modes in each subdomain (annular spaces upstream and downstream of a blade/vane row, inter-blade/vane channels)
- Matching at interfaces to ensure continuity of the acoustic field: infinite system of equations
- Solving of the truncated system by matrix inversion: modal coefficients

Preliminary MMBW results

Impact of an acoustic wave

NASA SDT Test Case (cylindrical cut at 22.35 cm)
OGV: 54 stators; Mach number 0.4, 5726 Hz

Excellent agreement with Hixon results without spurious reflections

Somputational Cost

Numerical methods for fan noise prediction

Computational Aero-Acoustics (CAA):

DIRECT approach

- + actual acoustic propagation
- high-order schemes

HYBRID approach

- + classical CFD solvers (even incompressible)
- + complex source geometries
- No feedback mechanisms
- Hypothesis on the propagation (no complex installation effects)

ANALYTICAL approach

- + classical CFD solvers (even RANS)
- simple source mechanism and geometry

Possible numerical methods for noise sources

Numerical simulation of acoustic sources on blades (DNS is still too costly for a real case ($R_e > 10^6$)

URANS (Navier-Stokes)

- Unsteady mean flow field with turbulence modeling
- Deterministic problems

LBM/VLES

- Large-eddies resolved, small eddies are modelled
- Unsteady method limited to low Mach applications (M<0.5))
- Low dispersion for acoustic propagation

LES (Navier-Stokes)

- Large-eddies resolved, small eddies are modelled
- Efficient method for high subsonic flows (precision)

Tonal noise

Tonal/broadband noise

Tonal/broadband noise

Solvers used here

- Navier-Stokes, CFX (ANSYS): finite volume, 3D compressible flow, unstructured mesh, dedicated to turbomachines
- LBM, Powerflow (Exa): low-Mach 3D compressible flow, cubic mesh, turbomachine capabilities
- Navier-Stokes, TurboAVBP (Cerfacs-IFPen): finite element, 3D compressible flow, unstructured mesh, dedicated to turbomachines

Results of ANCF URANS simulations

(b) U-RANS entropy flowfield at h = 10%.

(d) U-RANS entropy flowfield at h = 50%.

(f) U-RANS entropy flowfield at h = 98%

Hub and tip corner separations on stator

(a) RMS of the pressure jump fluctuations.

(b) Amplitude of the CFD pressure jump, f = BPF

Good CFD/analytical agreement
Differences seen in the corner separations

ETC 2015, AIAA2014

Comparison of acoustic powers

Frequency	Upstream power			Downstream power		
	EXP	Ana	CFD	EXP	Ana	CFD
$1 \times BPF$	109.4	108.08	113.73	104.9	106.99	103.95
$2 \times BPF$	106.3	113.32	114.75	110.9	112.21	108.63
$3 \times BPF$	102.9	97.22	108.32	112.9	106.97	110.03

Good CFD/analytical/experimental agreement

Comparison of LBM acoustic powers

Good CFD/analytical/experimental agreement
Moderate influence of LE camber

LBM Direct far-field acoustics

Good CFD/analytical/experimental agreement

Effect of heterogeneous stators

(b) Heterogeneous - V = 14

Good CFD/analytical/experimental agreement Wake interaction and inlet distortion dominant noise

Evidence of Parker's resonance

Non-linear interaction between stator potential field and rotor wakes Parker's β mode seen in stator (quasi-stationary)

Test-cases AIAA-RC1 (SDT fan) -1

54 stators (reference); approach condition

	Massflow	rate	Total pressure ratio			
Experiments*	26.54 kg/s		1.154			
RANS	26.14 kg/s	-1.5%	1.160	+0.5%		
LES	25.78 kg/s	-2.8%	1.162	+0.7%		

Rescaled geometry to reduce blade count Good overall performance prediction (similar as LBM)

Test-Case AIAA-RC1 (SDT fan) -2

Mean streamwise Mach number at mid rotor-stator distance

Test-Case AIAA-RC1 (SDT fan) -3

Excellent turbulence predictions (all rms levels)Quasi local wake turbulence isotropy

Test-Case AIAA-RC1 (SDT fan) -4

Good overall shape prediction (including inlet porous surface)

Overprediction of rotor contribution (tip separation and vortices)

On-going Goldstein analogy prediction

Future: high Mach number cases

Future: High Mach number LBM

Excellent agreement for all approach configurations Good preliminary high-speed predictions (with shocks)

Acoustic analysis of HP turbine noise

Conclusions

- Analytical models of tonal and broadband noise developed from Goldstein's analogy and finite-chord flat plate responses (Schwarzchild or Wiener-Hopf methods or mode marching) are efficient and accurate pre-design tools for fans, propellers and compressors.
- Satisfactory extension to swirl and lined walls of Wiener-Hopf models; Mode matching in bifurcated waveguides promising method.
- These models are developed in free field and in duct with solidity effect or not, for most noise mechanisms.
- URANS simulations efficient and accurate methods to obtain tonal noise sources
- The direct simulation of broadband noise (LES) for turbofans remains a challenge, but first results are promising!
- LBM is able to reproduce both tonal and broadband noise of most interaction mechanisms even at high Mach number

Validation and analysis by simulations

Snecma CME2 Compressor / Turb'flow Simulations

LES: Broadband noise

AIAA 2013-2042

URANS: Tonal noise

AIAA j 2014 (x2); JPP 2014

Thanks for your attention