

Conceptual Design of a Strut-Braced Wing Configuration

Graham Potter

Engineering Specialist

Advanced Design

Product Development Engineering, Aerospace

Bombardier

UTIAS National Colloquium on Sustainable Aviation 22 June 2017

Environmentally Focused Aircraft (EFA) study objective:

Significantly reduce environmental impact (emissions, local air quality and community noise)
 by evaluating alternative long-range business jet and commercial aircraft configurations

Technology assumption:

Consistent with EIS 2030-2035

Aircraft requirements:

Based on existing Bombardier products

PRIVATE AND CONFIDENTIAL Bombardier Inc. or its subsidiaries. All rights reserved.

The History of the Strut-Braced Wing

PRIVATE AND CONFIDENTIAL Sombardier Inc. or its subsidiaries. All rights reserved.

Recent Research Efforts

PRIVATE AND CONFIDENTIAL Bombardier Inc. or its subsidiaries. All rights reserved.

- Optimum wing aspect ratio is a compromise between wing weight and drag
- Strut-braced wing configuration allows reduced wing weight at a given aspect ratio
- Allows optimization to higher aspect ratios with large reductions in induced drag
- Other studies suggest 5-10% fuel burn savings compared to equivalent conventional configuration

PRIVATE AND CONFIDENTIAL mbardier Inc. or its subsidiaries. All rights reserved

Start with a conventional wing geometry

Start with a conventional wing geometry

PRIVATE AND CONFIDENTIAL
Bombardier Inc. or its subsidiaries. All rights reserv

PRIVATE AND CONFIDENTIAL combardier Inc. or its subsidiaries. All rights reserve

PRIVATE AND CONFIDENTIAL Bombardier Inc. or its subsidiaries. All rights reserve

ASPER Wing Weight Estimation Tool

- The primary challenge in modelling strut-braced configurations is estimating wing structural weight
- Little or no data exists for such configurations
- Dependent on physics-based analysis methods, but need short run-time to allow wide design-space exploration
- Bombardier has developed the ASPER tool for strut-braced wing weight estimation

SBW Strut-Braced Wing

FEM Finite Element Model

Initial Strut-Braced Wing Solution

- Implemented ASPER within CMDO aircraft design tool to generate initial SBW solution
- Specified Mach 0.7 cruise speed
- Created GFEM structural model of this configuration and sized using same loads predicted by ASPER
- SBW GFEM used as validation case for ASPER

PRIVATE AND CONFIDENTIAL

Bombardier Inc. or its subsidiaries. All rights reserved

ASPER Validation: Stiffness

- Compared stiffness from ASPER and GFEM
- Bending stiffness reasonable match
- Torsional stiffness less impressive

ASPER Validation: Stiffness

- Then compared to similar plots for a conventional wing
- ASPER is shown to do a good job of capturing the big differences in stiffness due to the strut

BOMBARDIER

Bombardier Inc.

ASPER Validation: Weight

- ASPER wing weight estimate compared to GFEM based estimate for multiple configurations
- CMDO empirical method also compared (non-strut only)
- ASPER agrees well with SBW GFEM
- ASPER over-predicts wing weight for conventional wings by 35%

Application of Conceptual Multi-Disciplinary Optimization (CMDO)

- EFA study makes use of Bombardier's CMDO capability
- CRJ700 used as reference aircraft and optimization start point
- **Design Variables**
 - Wing geometry (area, aspect-ratio, sweep, thickness to chord)
 - Engine scale factor

Constraints

- Design range
- Take-off field length
- Single engine climb gradient
- Approach speed
- Fuel volume
- Landing gear integration

Objective

Minimum operating cost

CMDO Workflow

CMDO Sizing Cases

PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved.

Sensitivity to Wing Aspect Ratio

© Bombardier Inc. or its subsidiaries. All rights reserved.

BOMBARDIER

SBW Strut-Braced Wing

HW High Wing

CMDO Optimization Results

SBW Strut-Braced Wing
HW High Wing
LW Low Wing

Comparison of CMDO Optimized Solutions

Conclusions

- Strut-braced wing CMDO solution has been generated
- SBW offers 7% fuel burn reduction compared to conventional solution (ASPER, high-wing)
- Benefit falls to 3% compared to low-wing configuration (ASPER)
- SBW has higher fuel-burn than conventional low-wing (Empirical)
- True benefit (or not) of SBW configuration is hard to judge due to wing weight uncertainty
- Significant discrepancy between empirical and ASPER weight estimates needs to be resolved

Next Steps

- Loads will be generated using aero-structural model
- New GFEM will be created for latest configuration
- GFEM based wing weight estimate will be used to validate ASPER prediction
- Aerodynamic design of wing and strut to validate empirical drag polar

