Research in Internal and External Aerodynamics for the Next Generation of Efficient Aircraft

Huu Duc Vo

Associate Professor

Department of Mechanical Engineering
École Polytechnique de Montréal

2017 National Colloquium on Sustainable Aviation at UTIAS

June 21, 2017

OUTLINE

- Research Areas
- Research Approach
- Experimental Facilities
- Internal Aerodynamics Research
- External Aerodynamics Research
- Conclusion

RESEARCH AREAS

Low-Pressure

Compressor

I) Internal flows: compressor aerodynamics

Tip clearance flow

High-Pressure

Turbine

High-Pressure

Compressor

Low-Pressure

Turbine

RESEARCH APPROACH

Analytical

Modeling

Numerical (CFD)

- Preliminary assessment of concepts
- Elucidate flow physics

- Validation of concepts
- Validation of models/flow physics
- Validation of numerical setup

EXPERIMENTAL FACILITIES

1) Transonic compressor test rig

<u>Utility</u>: Validate concepts in compressor aerodynamics at realistic speeds

2) Low-speed compressor test rigs

Max. Power	7.7 HP
Max. Rotational Speed	8900 RPM
Max. M _{tip, circumferential}	0.25
Mass flow	~1-1.2 lbm/s

<u>Utility</u>: Low-cost validation of concepts in compressor aerodynamics

3) Closed-Loop Wind Tunnel and Cascade Test Section

24 x 24 x96 inch test section

CANADA FOUNDATION
CANADA FOUNDATION
FOR INNOVATION
FOUNDATION
FOUNDATION POUR L'INNOVATION

Max. Power	200 HP
Max. Speed	91 m/s

<u>Utility</u>: - Low-cost validation of concepts external aerodynamics

- Detailed measurements of blade passage flow in turbomachinery

4) Aerodynamic Plasma Actuation

DBD plasma actuator

INTERNAL AERODYNAMICS RESEARCH

A) Prediction of Non-Synchronous Vibrations (NSV)

Objective: Safe use of lighter aero-engine compressor/fan blades

NEW impinging jet behavior proposed and proven experimentally

Validated on transonic compressor rig at P&WC

Application to

$$\frac{\left(c - U_F\right)}{2sf_b} = 1$$

$$\frac{U_{tipc}}{\sqrt{T_{tip}}} = k \left(\sqrt{\gamma R} - \frac{2sf_b}{n\sqrt{T_{tip}}} \right)$$

First explanation and predictive tool for NSV

B) Delay of Rotating Stall

Objective: Improve aero-engine efficiency/operating envelope

Project 1: Effective and lossless casing treatment

peak efficency

unchanged

Casing treatment: passive stall margin improvement strategy

Numerical parametric study for slot casing treatment on mixed-flow compressor

Preliminary geometrical design rules for effective lossless slots casing treatment

MONTRÉAL

Project 2: Delay of rotating stall with plasma actuators

Preliminary numerical (CFD) assessment on lowspeed axial compressor

Application to low-speed axial-centrifugal compressor rig

Numerical (CFD) assessment

Configuration 1: Two-stage, actuator on axial stage

Configuration 2: Centrifugal stage only, actuator on impeller

Installation of plasma actuators

Axial stage

Centrifugal stage

Results

Actuator on axial stage

Actuator on centrifugal stage

Successful demonstration of concept for both axial and centrifugal compressors (first)

C) Desensitization of compressor performance & stall margin

Objective: Prevent degradation in aero-engine performance and operating envelope with age

Transient operation \rightarrow diff. thermal exp. \rightarrow temp. t.c. increase Operational age \rightarrow rotor tip rubbing \rightarrow permanent t.c. increase

Fuel consumption ↑
Operating envelope ↓

Extensive numerical (CFD) parametric study of geometric design of axial rotor

Back Lean

Aft Chordwise Sweep

Negative Dihedral

Forward Lean

Forward Chordwise Sweep Positive Dihedral

Identification of <u>two desensitizing flow features</u>

Explanation of associated flow mechanisms

Desensitizing blade design strategies

New desensitizing casing treatment concept

Experimental validation on real transonic axial compressor stage at Polytechnique

(In progress)

Green Aviation
Research & Development
Network

D) Plasma actuation on aero-engine components

Collaboration with & led by NRC Gas Turbine Laboratory

Project 1: Reduce inlet distortion in non-axial aero-engine intake/inter-turbine duct

Objective: Improve engine performance/operating envelope & reduce turbine length/weight

Project 2: Reduce compressor blade corner separation

Objective: Improve compressor stage pressure ratio & effciency (reduce # stages)

Project 3: Flashback control in lean-premixed dump combustor via plasma actuators

Objective: Improve operability of (low-NOx) lean-premixed dump combustors

EXTERNAL AERODYNAMICS RESEARCH

Flight Control with Plasma Actuation

Objective: Eliminate all movable flight control surfaces

- Alter lift on wing surfaces
- Generate lift on empennages

<u>Impact</u>: - Reduction of weight and (production/operating) costs

- Increase in range (more fuel volume)

A) Wing tip plasma actuation

Test Wing Geometry

CFD Simulations

Wind Tunnel Test Setup

Results

Concept of wing tip plasma actuation can generate sufficient lift change for flight control with sufficient actuator strength

B) Plasma Gurney Flap

(collaboration with & led by Prof .N.W. Mureithi)

Concept of plasma Gurney flap can work

C) Lift reduction with plasma actuation

MONTRÉAL

Measured velocity vectors on suction side with PIV

Concept of 'plasma spoiler' can work with sufficient actuation strength

CONCLUSION

- Research on aerodynamics of aero-engine and aircraft wings to make future aircraft more fuel efficient, lighter and mechanically simpler
- Preliminary study of concepts
- Emphasis on understanding of flow mechanism, preliminary numerical assessment/experimental validation of concepts
- Work continuing on further assessment of some of the concepts shown on more realistic geometries/conditions

Thank

You

Question

