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Enzymatic 
modification

Deconstructi
on or 
combustion

Bioethanol
Levulinic acids

Heat and power

Formic acids



HX
Gum exudates

X
Seaweed

GAX
Oat Spelt

AGX
Spruce

GX
Beechwood

AX
Wheat bran

Xylans represent abundant renewable 
resources for the development of 

bioproducts.
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GH115 enzymes are the only known 
enzymes that target GlcA/MeGlcA from high 

molecular-weight xylans.

Endo-(1→4)-β-xylanase 

Acetylxylan esterase  

α-L-Arabinofuranosidase  

(1→2)-α-Glucuronidase  

Ferulic acid esterase  

Sidegroup chemistry Prebiotic activity, rheology, 
solubility, material 
attributes
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In nature, carbohydrate-active enzymes 
are produced in organisms from various 
habitats including harsh environmental 

conditions
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http://australianfungi.blogspot.ca

http://www.bugoutservice.com/termite-
protection

https://en.wikipedia.org/wiki/Iceberg

http://wallpapersin4k.
net
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Marine bacterium
Saccharophagus degradans

Alkaliphilic bacterium
Amphibacillus xylanus

Salt marsh cord grass in 
the Chesapeake Bay

Composts of manure 
with grass and rice 
straw in Japan

Tolerance in 
high salt 
condition?

Tolerance in alkaline 
condition?

Select bacteria from unique habitats 

https://microbewiki.kenyon.edu https://microbewiki.kenyon.edu
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ATCGCTAGTACG
GCATGCACTGTG
CATAATTCCAGTA
CGTTTGGGATCG

ATCGCTAGTACG
GCATGCACTGTG
CATAATTCCAGTA
CGTTTGGGATCG

Source organism

Obtain gene of 
interest through 
genomic DNA or 
direct synthesis

Amplificati
on

Insert into 
plasmid

Transform E. 
coli cells

Genetically 
modified E. 
coli cells

Bacterial 
culture

Induce protein 
expression

Enzyme 
purification

Produce enzymes using biotechnology
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Both enzymes demonstrated activity 
towards glucuronoxylans and oligomers 

with preference towards internally 
substituted residues. 

kcat=29.2 ± 1.6 s -1 
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AxyAgu115A demonstrated better 
performance in alkaline condition

AxyAgu115A 
performance was 
higher than 
SdeAgu115A, 
particularly at pH 
values above 9.0.

Increase in substrate 
solubility in alkaline 
condition increased 
substrate accessibility. 
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AxyAgu115A-24h

SdeAgu115A-24h

Enzyme Microb. Technol. 104 (2017) 22–2

Grey bars, beechwood glucuronoxy

White bars, Oat spelt xylan



Consistent with the marine origin of 
SdeAgu115A, 

salt activation of enzyme activity was 
observed for SdeAgu115A but not 

AxyAgu115A

SdeAgu115A
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AxyAgu115A displayed higher activity towards 
complex xylans compared to SdeAgu115A

Polymeric substrates

Activity (μmol product/min/μmol enzyme)

SdeAgu115A AxyAgu115A

Beechwood 
glucuronoxylan

2470 ± 70
4700 ± 100

Spruce 
arabinoglucuronoxylan

917 ± 6
5630 ± 60

Oat spelt 
glucuronoarabinoxylan

24 ± 1
 501 ± 12

(C) 
       6.5 Å 
-14.0 kcal/mol 

• Accommodation of 
complex xylans was 
consistent with docking 
analysis that predicted 
accessibility of 
AxyAgu115A to branched 
xylo-oligosaccharides. 

(D) 
       11.2 Å 
-11.7 kcal/mol 

11
Enzyme Microb. Technol. 104 (2017) 22–28. 



12

Thin layer 
chromatogra
phy

Scanning 
transmission X-
ray microscopy

LC-MS/MS
Colorime
tric 
analysis

Glucuronoxylan + H2O 
GH115 

Xylan + GlcA 

GlcA + NAD+ + H2O
 

Uronate dehydrogenase 
Glucarate + NADH + H+ 

NADH is measured by the increase in absorbance at 340 nm. 

Standard enzyme assay used to measure GH115 activity: Enzyme coupling method

https://www.spectrumchemical.com
http://unicorn.mcmaster.ca/research/stxm-
intro/polySTXMintro-all.html

library/pierce-protein-methods/overview-mass-
spectrometry.html



Pros and cons of existing 
techniques
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Separation 
techniques

Pros Cons Re
f

Size 
exclusion

Identified 
analytes 
above 9 kDa

Compounds with 
the same size co-
elute

1

Ion 
chromatogr
aphy

Separated 
neutral and 
acidic 
oligomers

Substitution 
position of MeGlcA 
was not confirmed

2

HPAEC-PAD Effective 
separation of 
oligomers

Poor compatibility 
with mass 
spectrometry due 
to high salt 
concentration

3

Capillary 
electrophor
esis

High 
resolution

Samples typically 
need derivitation

4

• Differentiate diverse 
characteristics.

• Be label-free.

• Require minimum 
sample pretreatment.

• Be compatible with 
mass spectrometry.

• Establish an in-house 
ms/ms library.

• Be capable of 
analyzing industrially 
relevant samples 
containing a mixture 
of sugars.

• Be high throughput.

My goal was to 
develop a LC-MS/MS 
method that could



An LC-MS/MS method was developed; over 70 sugars 
derived from lignocellulose with different sizes, 

polarity, acidity and linkage positions were identified.
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Application of the established LC-
MS/MS method to characterize 

industrial sample before and after 
enzyme treatment 

Compound Untreated
Enzymes cocktail 
containing 
AxyAgu115A

Xylose ++ +++
Xylobiose ++ ++
Xylotriose +++ ++++

Xylotetraose +++ ++++

Xylopentaose +++ ++++

Xylohexaose +++ ++++

MeGlcA + ++++
U4m2X +++ ++
U4m2XX +++ ++
XU4m2XX +++ ++
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Engineering significance

• SdeAgu115A and AxyAgu115A have the potential 
to tailor xylans with high molecular weight.

• The unique tolerance properties of these two 
enzymes can benefit industrial applications with 
corresponding conditions.

• AxyAgu115A was active on xylan recovered from 
liquid hot water extraction of mixed hardwood.

• An in-house LC-MS/MS method was developed to 
characterize the hemicellulosic fraction before and 
after enzyme treatment, which has the potential 
to be applied to other plant fibers.
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