
Revisited: Machine Intelligence in
Heterogeneous Multi Agent Systems

Kaustav Jyoti Borah1, Department of Aerospace Engineering, Ryerson University, Canada

email: kborah@ryerson.ca

Rajashree Talukdar2, B. Tech, Department of Computer Science and Engineering, SMIT,

India.

Abstract: Machine learning techniques have been widely applied for solving decision making

problems. Machine learning algorithms perform better as compared to other algorithms while

dealing with complex environments. The recent development in the area of neural network has

enabled reinforcement learning techniques to provide the optimal policies for sophisticated and

capable agents. In this paper we would like to explore some algorithms people have applied

recently based on interaction of multiple agents and their components. We would like to provide

a survey of reinforcement learning techniques to solve complex and real-world scenarios.

1. Introduction

An entity that recognizes its ambience with the help of sensors and uses its effectors to

act upon that environment is called an agent [1]. Multi agent systems is a subfield of

machine learning is used in many intelligent autonomous systems to make it smarter. To

coordinate with other independent agents’ behaviour in multiple agent systems

environment, ML techniques aims to provide principles for construction of complex

systems. When the agents are not dependent of one another in such a way that they can

have approach to the environment independently. Hence, they need to embrace new

circumstances. Therefore, learning and exploring about the environment demands the

inclusion of a learning algorithm for each agent. Some amount of interaction becomes

mandatory amongst the different agents in a multi agent system for them to act like a

group. However, internet technology becomes useful for the application of software

agents which gets high importance in academia and commercial institutes.

Based on the heterogeneity of agent systems, multi agent systems can be further

subdivided into two categories 1) Homogeneous and 2) Heterogeneous. Homogeneous

MAS include agents that all have the same characteristics and functionalities, while

heterogeneous MAS include agents with variety of features that means the

heterogeneous systems are composed of many subagents or sub components which are

not uniform throughout. It is a distributed system contains many other hardware and

software that works together in cooperative fashion to solve a critical problem. Example

of Heterogeneous systems are smart grids, computer networks, Stock Market, Power

systems distributions in aircraft etc.

A good advantage about multi agent learning is that, the performance of the agent

enhances every moment. Multi agent learning systems is known for the exchange

information’s between their agents and interacting with the environment. All the

mailto:kborah@ryerson.ca
mailto:kborah@ryerson.ca

algorithms in machine learning which were developed can be transferred to settings

where there are multiple, interdependent, interacting learning agents [5] . However, they

may need alteration to take into account about other agents in the environment [3,4]. In

our paper, we focussed on different machine learning techniques. The paper organises as

section 3 describes the environments in multi agent system, section 4 describes general

heterogeneous system architecture, section 5 machine learning techniques followed by

section 6 applications and future work and section 7 is conclusion.

2. Ongoing Research

This research is carried out during my PhD studies so far has been focused primarily on

multiagent systems and machine learning.

3. Multi Agent System Environments

Agents can operate in many different types of environments. The main categories are

summarised below, in mutually excluding pairs, based on the definitions provided by [30]

[31]

1. Static environments: Based on agents action, the environment reacts.
2. Dynamic environments: If there is no input from an agent still the environment can
change, to potentially unknown states.
3.Fully observable environments: At each time step, the full state of environment is
available.
4.Partially observable environments: All the state of environment is not available, only
some part will be available.
5. Deterministic environments: To get the next state of environment, the agent has to take
actions in the current state.
6. Stochastic environments: Current state action can lead to another state if needed.
7. Stationary environment: a stationary environment does not evolve over time and has a
predefined set of states.
8.. Non-stationary environment: a non-stationary environment evolves over time and can
lead an agent to previously unencountered states.

4. General Heterogeneous Multi agent architecture

Figure 1: General Heterogeneous Architecture

The figure here shows general multi agent scenario for heterogeneous communicating

agents. These agents are communicating to each other to fulfill a global goal. In the figure

above, we have “m” group of heterogeneous agents where A= {A1, A2, … Am} are the group

of agents. Inside group 1, we assume that all agents are homogeneous. All the arrow mark

with blue colours shows a communication link between the agents meaning all agents can

communicate.

5. Machine learning Techniques

Artificial Intelligence has a well-known subfield under its domain which is identified widely

as Multi Agent systems. It makes a prominent influence on devising and resolving

extremely difficult framework problems. In multi agent systems; an agent has no clear

definition and therefore as defined previously the agents are considered as entity with

goals, action and domain knowledge in the environment. The agents will function as a

“behaviour” and although the capability to coordinate the behaviors of autonomous

agents is a recent concept yet development in the field is quick by building upon the

existing work conducted earlier in the field of Distributed Artificial Intelligence (DAI) [2].

The perspective of Machine learning is mostly based on the type of the reward or return

that critic can furnish as a response to learner. The three main techniques [5] that were

widely discussed widely previously were 1) Supervised Learning 2) Unsupervised learning

and 3) Reinforcement learning. In supervised learning, the correct result of the system is

provided by the critic where as in unsupervised learning, no response is guaranteed at all.

While in reinforcement learning; actor-critic techniques a newly introduced method is

applied to the output of the learner which produced an ultimate return. In all three cases,

the system environment or the agents themselves are assumed to provide a learning

feedback.

The generality and robustness of multiagent reinforcement learning algorithms has

grabbed the attention for its wide usage and these techniques have been applicable in

both stationary and non-stationary environments.

5.1 Supervised Learning

The machine learning technique has the ability to learn a function that are based on input

output pairs which maps an input to an output .It deduces a function from labeled training

data consisting of a set of training example. Considering each example which can be

expressed as a pair consisting of an input and a desired output is one of the main

characteristics of Supervised learning. Algorithms based on Supervised learning examine

the training data and produces an inferred function, with the help of which new examples

can be mapped. The perfect class labels for critical and unknown instances can be

determined by an algorithm during the optimal scenario. This can be attained when the

learning algorithm generalizes from the training data to unknown situations in a

"reasonable" way. There are various complexities that are encountered when multiple

agents interact with each other, therefore direct application of supervised learning

algorithms are difficult because they typically assume a critic that can confer the agents

https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Training_set

with the “correct” behavior [5] for a particular specific situation. Supervised learning

method was used by Sniezynski [9] for the fish bank game. The interaction in

heterogeneous agents’ environment are improved by Garland and Alterman [10] with the

use of learning coordinated procedures. William [11] and his team delineated inductive

learning methods to understand individual’s attitude’s in the area of semantic webs. A

rule induction technique was applied by Gehrke and Wojtusiak [12], in their research for

route planning. Learning abilities are incorporated into BDI model by Airiau et al. [13], in

which decision tree learning is utilized to enhance plan applicability testing. Table 1 shows

few important characteristics of above supervised learners compared to the learning

aspects [5]

 Table 1: Supervised learners compared to learning aspects [5]

 Cen/Decentralized Coordination Learning Final Goal

Sniezynski [9] Centralized No 2-Agents Selfish

Garland and
Alterman [10]

De-Centralized Yes All- Agents Cooperative

Williams [11] De-Centralized Yes All- Agents Cooperative

Gehrke and
Wojtusiak [12]

De-Centralized Yes All- Agents Cooperative

Airiau et al. [13] De-Centralized Yes All- Agents Cooperative

5.2 Unsupervised Learning

In this case, there is no explicit concepts are given. Many researchers have already

reviewed the unsupervised learning algorithms applied to multi agent-based systems and

conclude that, this is not a suitable technique for multi agent applications. Main approach

in multi agent is to increase the overall performance, but unsupervised learning is

supposed to be an aimless approach for this application. Hence minimal research has been

witnessed in this area. However, unsupervised learning algorithms were used by the

researchers to find a solution to the auxiliary issues that help agent through its learning

[5, 14,15].

5.3 Reinforcement Learning

Reinforcement learning stands different from the other two methods mentioned above,

in a way that it is a method in which the paradigm of the agent is matched exactly whereas

for the supervised and unsupervised learning the learner must be provided with healthy

data. Autonomous agent that has no prior knowledge behaviour of the system or of the

environment is assigned by reinforcement learning by gradually enhancing its

performance based on given returns as the learning task is carried out [15]. Hence, a huge

percentage of people working in this area used reinforcement learning algorithms. As

stated in [5], the literature available for reinforcement learning algorithms of multi-agent

systems can be divided into two different subsets: 1) Estimating value functions-based

methods; and 2) Stochastic search-based methods in which behaviours are learnt directly

by the agents without involving value functions and it focusses on evolutionary

computation [5]. Single and multiple agents’ algorithms [5] are available for learning

methods based on estimate value functions. A Markov decision Process also known as

MDP is known to the environment in reinforcement learning as most of reinforcement

learning algorithms uses dynamic programming approach. There are many algorithms

based on reinforcements learning. Comparison of various reinforcement learning

algorithms are [5].

Table 2: Comparison of various Reinforcement learning algorithms [5]

Researchers Cen/Decentralized Coordination
b/w agents

Learning Final Goal

Bowling and
Veloso [22]

 D Yes All-Agents Cooperative
and
Competitive

Barto et al.
[19]

C No All-Agents Selfish

Sutton [20] C No All-Agents Selfish

Moore and
Atkeson [21]

C No All-Agents Selfish

Greenwald
and Hall [23]

D Yes All-Agents Competive

Kononen [24] D Yes One-Agent Cooperative

Lagoudakis
and Parr [25]

C No One-Agent Selfish

McGlohon
and Sen [26]

D Yes All-Agents Cooperative

Qi and Sun
[27]

D Yes All-Agents Cooperative

Puterman [17] C No All-Agents Selfish

Watkins and
Dayan [18]

C No All-Agents Selfish

Bertsekas [16] C No All-Agents Selfish

Table 3: Standard algorithms for Reinforcement learning [5]

Algorithm Description Model Policy Action

Space
State
Space

Operator

Monte
Carlo

Every visit to
monte Carlo

Model
Free

Off Discrete Discrete Sample-
Means

Q Learning State Action
reward state

Model
Free

Off Discrete Discrete Q-Value

SARSA State action
reward state
action

Model
Free

On Discrete Discrete Q-Value

5.3.1 Monte-Carlo Method

Monte–Carlo Method [32] obtains value function producing the episode repeatedly and

it keeps a note about the average return at each state or each state action-pair. Thus, the

calculation of the state value function is carried out as follows:

 𝑉𝜋
𝑀𝐶(𝑠) = lim

𝑖→+∞
𝐸[𝑟𝑖(𝑠𝑡)|𝑠𝑡 = 𝑠, 𝜋] (1)

Where ri (st) symbolizes observed returns at state st in episode ith. Similarly, the value

function of state action pair is given as follows:

 𝑄𝜋
𝑀𝐶(𝑠, 𝑎) = lim

𝑖→+∞
𝐸[𝑟𝑖(𝑠𝑡, 𝑎𝑡)| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (2)

MC method is known as model free as prior knowledge about transitional probabilities is

not mandatory in this method.

However, for convergence to take places this method is based on two vital assumptions

[32]

1) it has a large number of episodes and

2) visiting every state and every action should be carried out for a large number of times.

Making this ‘’exploration’’ a feasible one, usage of e-greedy strategy in policy

improvement should be made:

𝑅𝑆: 𝜋 → 𝜋′ = 𝜓′(𝑠) = 1 − 𝜖 +
𝜖

|ΔΠ(𝑠)|
,𝑎𝑖 = 𝑎𝑗Λ𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄Π(𝑠. 𝑎𝑘) (3)

𝜖

|ΔΠ(𝑠)
, ∀𝑎𝑖 ∈ ∆𝜋 ∧ 𝑎𝑖 ≠ 𝑎𝑗

Where | π (s)| depicts number of candidate action taken in state s and 0<ϵ<1. Usually

the division of MC algorithm are made into two groups: on-policy and off-policy. In on-

policy method application of policy π is carried out for both evaluation and exploration

and purpose. Therefore, the policy π should be stochastic or soft. But off-policy uses

different policy π’≠ π in order to produce the episodes and hence π can be deterministic.

Off-policy method is more attractive due to its simplicity, but the stability of on-policy

method is more when dealing with continuous state space problems and when applying

it together with function approximator such as neural networks.

5.3.2 Temporal Difference Method

TD (Temporal Difference) is a model free approach that learns from its experiences[32].

This method in order to make an update doesn’t wait for the episode to get over. Every

step is updated within the episode by leveraging 1-step Bellman equation and therefore

a faster convergence is possibly feasible for this method:

 𝑈1: 𝑉𝑖(𝑠𝑡) ←a𝑉𝑖−1(𝑠𝑡) + (1 − 𝛼)(𝑟𝑖+1 + 𝛾𝑉𝑖−1(𝑠𝑡+1) (4)

Where α is a step size parameter and 0< α <1. It makes use of previously calculated values

V i-1 for updating of the current one’s V i, which is known as bootstrapping method, which

has the advantage of learning fast over the the non-bootstrapping methods in most of the

cases. TD learning is also divided into two major categories: On- policy TD learning (Sarsa)

and Off-policy TD learning(Q-learning). In Sarsa algorithm estimates value function of

state action pair based on:

 𝑈2: 𝑄𝑖(𝑠𝑖, 𝑎𝑡) ← 𝛼𝑄𝑖−1(𝑠𝑡,𝑎𝑡) + (1 − 𝛼)(𝑟𝑡+1 + 𝛾𝑄𝑖−1(𝑠𝑡+1, 𝑎𝑡+1) (5)

On the other hand, single step optimality bellman equation is used by Q-learning to carry

out the update, i.e., direct approximation of value function of optimal policy is done by Q-

learning:

𝑈3: 𝑄𝑖(𝑠𝑡, 𝑎𝑡) ← 𝛼𝑄𝑖−1(𝑠𝑡,𝑎𝑡) + (1 − 𝛼)(𝑟𝑡+1 + 𝛾 max
𝑎𝑡+1

𝑗
𝑄𝑖−1 (𝑠𝑖+1, 𝑎𝑡+1

𝑗
)) (6)

It can be noticed that the operator max in update rule substitutes for a deterministic policy

and this strongly explains why Q-learning is off-policy.

Tabular structure is used by these two methods in order to store the value function of

each state or each function pair. However, for solving complicated problems which

consists of a number of stages it becomes insufficient due to lack of memory. Therefore,

actor-critic (AC) method is introduced to overcome these limitations. AC includes two

memory structure for an agent [32]: actor structure is utilized for selection of appropriate

action in accordance to the observed state and transfer the same to critic structure for

evaluation. Critic structure uses the following equation as a TD error to decide the future

tendency of a selected action.

 𝛿(𝑎𝑡) = 𝛽(𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)) − (1 − 𝛽)𝑉(𝑆𝑡) (7)

5.3.3 Q learning

In order to learn agent systems or sub-systems, Q learning is widely used reinforcement

learning based approach. The final objective of a Q learning is to evaluate a state of action

that is so called policy that results in maximum utility for the agent. After one action is

executed there will be reward for each policy that is generated. In simple word, the

environment is explored in which a reward is observed by experimenting the different

actions such that the agent learns in the process. In a finite markov decision process, an

optimal action selection can be identified by Q learning provided indefinite time for

exploration is given and a party random policy. The result of Q-learning, i.e., the policy,

may be observed as a table in which a numeric value is assigned to each state–action pair

(s, a), that gives an estimate of the (possibly long-term) reward to be received when

implementing a in s. After receiving a reward, an agent performs the required numerical

value updating of the state–action pair, based on the reward and on the evaluated best

reward to be obtained in the new state. Now with time, the agent is capable of enhancing

its estimates of the rewards to be obtained for all state–action pairs. The reader can find

the Q learning algorithm in more details [7,8]

There are some advantages of Q-learning which includes 1) Absolute convergence toward

the optimum 2) Natural applicability to agent systems because of the coupling of learning

and exploration. However, it has drawbacks that includes 1) Designing numerical suitable

reward function can be a nontrivial task. 2) Convergence to optimal and 3) No explanation

is given for any action preferences in learning the result.

6. Applications and Future work

One major application in this area is development of an algorithm which can perform very

well in airport ground handling management system. In this communication the ground

handling fleet management problem [28] at airports is taken into consideration with the

objective of enhancing aircraft service at arrival and departure terminals while we

consider the ground cost issues. After collaborative discussion between ground

management, airport authorities and airline, a machine learning technique will address to

solve this multi agent-based problem.

Another example involves prediction in the stock market. Portfolio management in the

stock trading [29] results in a successful handling and presents a theory-based foundation

for a stock trading system. The overall portfolio management tasks include extracting the

user profiles, collecting information on initial portfolio position of user, on behalf of the

user it observes the environment and suggesting better decisions, so the investment goals

of the user meets the requirements , and making decision suggestions to meet the

investment goals of the user. Based on the requirement analysis, Davis [29] presented a

framework for a Multi-Agent System for Stock Trading (MASST). The primary issues

addressed , it provides with different information sources and by interacting the agents

and providing decision-making for investors in the stock market. The candidate agents are

identified and also the tasks that the agents perform. Agent interaction and exchange of

information and knowledge between agent also has been described.

7. Conclusion

This research addressed some machine learning techniques for agents and multi agent

systems [5]. Furthermore, we also have provided two examples for reader as an

application of multi agent-based systems that are being developed at Ryerson University,

Toronto, Canada. While machine learning methods applied to multi agent systems still

require more attention to prove their practicality. ML for multi agents is still a relatively

new research area, and there are lot of open issues that require further development,

some of them have already been mentioned.

Acknowledgement

I would like to thank my wife Priyanka Talukdar, research scholar, department of Civil

Engineering of IIT- Guwahati (India) for her valuable suggestions in shaping this paper. This

survey was funded by NSERC (Natural Sciences and Engineering Research Council) Canada

and my supervisor in Ryerson University, Canada.

References

[1] Shoham, Y., and Leyton-Brown, K. Multiagent Systems Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press. 2009.

[2] Peter Stone and Manuela Veloso. “Multiagent Systems: A Survey from a Machine Learning
Perspective”, Autonomous Robotics volume 8, number 3. July 2008.

[3] Yang, Z., and Shi, X. “An agent-based immune evolutionary learning algorithm and its
application”, In Proceedings of the Intelligent Control and Automation (WCICA). 5008-5013. 2014.

[4] Qu, S., Jian, R., Chu, T., Wang, J., and Tan, T. “Computational Reasoning and Learning for Smart
Manufacturing Under Realistic Conditions”, In Proceedings of the Behavior, Economic and Social
Computing (BESC) Conferences, 1-8. 2014.

[5] Khaled M. Khalil, Mohamed Abdelaziz , Taymour T. Nazmy and Abdel- Badeeh M. Salem,
“Machine Learning Algorithms for multi Agent systems” Proceedings of the International
conference on Intelligent Information processing, Security and Advanced Communication- IPAC’15
2015.

[6] Yoad Lewenberg, 2017 “Machine Learning Techniques for Multiagent Systems” Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) pp. 5185-5186,
2017.

[7] Mitchell, T. Machine Learning. New York: McGraw-Hill, 1997.

[8] Kaebling, L.P., Littman, M.L., & Moore, A.W. “Reinforcement learning: a survey”, Journal of
Artificial Intelligence Research, 4. 1996.

[9] Sniezynski, B. “Supervised Rule Learning and Reinforcement Learning in A Multi-Agent System
for the Fish Banks Game”, Theory and Novel Applications of Machine Learning. 2009.

[10] Garland, A., and Alterman, A. “Autonomous agents that learn to better coordinate”,
Autonomous Agents and Multi-Agent Systems 8, 267-301. 2004.

[11] Williams, A. “Learning to share meaning in a multi-agent system”, Autonomous Agents and
Multi-Agent Systems 8, 165-193. 2004.

[12] Gehrke, J. D., and Wojtusiak, J. “Traffic Prediction for Agent Route Planning”, In Proceedings
of the International Conference on Computational Science, 692-701. 2008.

[13] Airiau, S., Padham, L., Sardina, S., and Sen, S. “Incorporating Learning in BDI Agents”, In
Adaptive Learning Agents and Multi- Agent Systems Workshop (ALAMAS+ALAg-08), 2008.

[14] Kiselev, A. A self-organizing multi-agent system for online unsupervised learning in complex
dynamic environments. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, 1808-1809, 2008.

[15] Sadeghlou, M., Akbarzadeh-T, M. R., and Naghibi-S, M. B. “Dynamic agent-based reward
shaping for multi-agent systems”, In Proceedings of the Iraniance Conference on Intelligent Systems
(ICIS), 1-6, 2014.

[16] Bertsekas, D. P. Dynamic Programming and Optimal control, 2nd Ed., Athena Scientific, 2001.

[17] Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st
Ed., Wiley, 2008.

[18] Watkins, C. J. C. H., and Dayan, P. Q-learning. Machine Learning 8, 279-292, 1992.

[19] Barto, A. G., Sutton, R. S., and Anderson, C. W. “Neuronlike adaptive elements that can solve
difficult learning control problems”, IEEE Transactions on Systems, Man, and Cybernetics 5, 843-
846, 1983, 1992.

[20] Sutton, R. S. “Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming”, In Proceedings of the Seventh International Conference on
Machin Learning (ICML-90), Austin, US, 216-224, 1990.

[21] Moore, A. W., and Atkeson, C. G. “Prioritized sweeping: Reinforcement learning with less data
and less time”, Machine Learning 13, 103-130, 1993.

[22] Bowling, M., and Veloso, M. “Multiagent learning using a variable learning rate”, Artificial
Intelligence 136, 215-250, 2002.

[23] Greenwald, A., and Hall, K. “Correlated-Q learning”, In Proceedings of the Twentieth
International Conference on Machine Learning (ICML-03), Washington, US, 242-249, 2003.

[24] Kononen, V. “Gradient descent for symmetric and asymmetric multiagent reinforcement
learning”, Web Intelligence and Agent Systems 3, 17-30, 2005.

[25] Lagoudakis, M. G., and Parr, R. “Least-squares policy iteration”, Machine Learning Research 4,
1107-1149, 2003.

[26] McGlohon, M., and Sen, S. “Learning to Cooperate in Multi- Agent Systems by Combining Q-
Learning and Evolutionary Strategy”, In Proceedings of the World Conference on Lateral Computing,
2004.

[27] Qi, D., and Sun, R. “A multi-agent system integrating reinforcement learning, bidding and
genetic algorithms”, Web Intelligence and Agent Systems 1, 187-202, 2003.

[28] Salma Fitouri Trabelsi, carlos Alberto Nunes Cosenza, Luis Gustavo Zelaya Cruz, Felix Mora-
Camino “AN operational approach for ground handling management at airports with imperfect
information” 19th International Conference on Industrial Engineering and Operations
Management, Jul, Valladolid, Spain, 2013.

[29] Darryl Davis, Yuan Luo and Kecheng Liu, “A Multi-Agent Framework for Stock Trading” School
of Computing, Staffordshire University, Stafford ST18 0DG, UK, Department of Computer Science,
University of Hull, HU6 7RX, UK 2000/8

[30] Andrei Marinescu “ Prediction-Based Multi-Agent Reinforcement Learning for Inherently Non-
Stationary Environments” PhD thesis, Computer Science, University of Dublin, Trinity College,
2016.

 [31] Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2003.

[32] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi, “ Deep Reinforcement Learning
for Multi-Agent Systems: A Review of Challenges, Solutions and Applications” retrieved from
arXiv:1812.11794v2 [cs.LG] 6 Feb 2019.

