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Abstract: Machine learning techniques have been widely applied for solving decision making 

problems. Machine learning algorithms perform better as compared to other algorithms while 

dealing with complex environments.  The recent development in the area of neural network  has 

enabled reinforcement learning techniques  to provide  the optimal policies for sophisticated and 

capable agents. In this paper we would like to explore some algorithms people have applied 

recently based on interaction of multiple agents and their components. We would like to provide 

a survey of reinforcement learning techniques to solve complex and real-world scenarios.  

 

1. Introduction 

An entity that recognizes its ambience with the help of sensors and uses its effectors to 

act upon that environment is called an agent [1]. Multi agent systems is a subfield of 

machine learning  is used in many intelligent autonomous systems to make it smarter. To 

coordinate with other independent agents’ behaviour in multiple agent systems 

environment, ML techniques aims to provide principles for construction of complex 

systems. When the agents are not dependent of one another in such a way that they can 

have approach to the environment independently. Hence, they need to embrace new 

circumstances. Therefore, learning and exploring about the environment demands the 

inclusion of a learning algorithm for each agent. Some amount of interaction becomes 

mandatory amongst the different agents in a multi agent system for them to act like a 

group. However, internet technology becomes useful for the application of software 

agents which gets high importance in academia and commercial institutes. 

 

Based on the heterogeneity of agent systems, multi agent systems can be further 

subdivided into two categories 1) Homogeneous and 2) Heterogeneous. Homogeneous 

MAS include agents that all have the same characteristics and functionalities, while 

heterogeneous MAS include agents with variety of features that means the 

heterogeneous systems are composed of many subagents or sub components which are 

not uniform throughout. It is a distributed system contains many other hardware and 

software that works together in cooperative fashion to solve a critical problem. Example 

of Heterogeneous systems are smart grids, computer networks, Stock Market, Power 

systems distributions in aircraft etc. 

                            

A good advantage about multi agent learning is that, the performance of the agent 

enhances every moment. Multi agent learning systems is known for the exchange 

information’s between their agents and interacting with the environment.  All the 
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algorithms in machine learning which were developed can be transferred to settings 

where there are multiple, interdependent, interacting learning agents [5] . However, they 

may need alteration to take into account about other agents in the environment [3,4]. In 

our paper, we focussed on different machine learning techniques. The paper organises as 

section 3 describes the environments in multi agent system, section 4 describes general 

heterogeneous system architecture, section 5 machine learning techniques followed by 

section 6 applications and future work and section 7 is conclusion. 

 

2. Ongoing Research 
 
This research is carried out during my PhD studies so far has been focused primarily on 

multiagent systems and machine learning. 

 

3. Multi Agent System Environments 
 
Agents can operate in many different types of environments. The main categories are 

summarised below, in mutually excluding pairs, based on the definitions provided by [30] 

[31] 

1. Static environments: Based on agents action, the environment reacts. 
2. Dynamic environments: If there is no input from an agent still the environment can 
change, to potentially unknown states. 
3.Fully observable environments: At each time step, the full state of environment is 
available. 
4.Partially observable environments: All the state of environment is not available, only 
some part will be available.  
5. Deterministic environments: To get the next state of environment, the agent has to take 
actions in the current state. 
6. Stochastic environments: Current state action can lead to another state if needed. 
7. Stationary environment: a stationary environment does not evolve over time and has a 
predefined set of states. 
8.. Non-stationary environment: a non-stationary environment evolves over time and can 
lead an agent to previously unencountered states. 
 

4. General Heterogeneous Multi agent architecture 

 
 

Figure 1: General Heterogeneous Architecture 



 
The figure here shows general multi agent scenario for heterogeneous communicating 

agents. These agents are communicating to each other to fulfill a global goal.  In the figure 

above, we have “m” group of heterogeneous agents where A= {A1, A2, … Am} are the group 

of agents. Inside group 1, we assume that all agents are homogeneous. All the arrow mark 

with blue colours shows a communication link between the agents meaning all agents can 

communicate. 

5.  Machine learning Techniques 
 
Artificial Intelligence has a well-known subfield under its domain which is identified widely 

as Multi Agent systems. It makes a prominent influence on devising and resolving 

extremely difficult framework problems. In multi agent systems; an agent has no clear 

definition and therefore as defined previously the agents are considered as entity with 

goals, action and domain knowledge in the environment. The agents will function as a 

“behaviour” and although the capability to coordinate the behaviors of autonomous 

agents is a recent concept yet development in the field is quick by building upon the 

existing work conducted earlier in the field of Distributed Artificial Intelligence (DAI) [2]. 

 

The perspective of Machine learning is mostly based on the type of the reward or return 

that critic can furnish as a response to learner. The three main techniques [5] that were 

widely discussed widely previously were 1) Supervised Learning 2) Unsupervised learning 

and 3) Reinforcement learning. In supervised learning, the correct result of the system is 

provided by the critic where as in unsupervised learning, no response is guaranteed at all.  

While in reinforcement learning; actor-critic techniques a newly introduced method is 

applied to the output of the learner which produced an ultimate return. In all three cases, 

the system environment or the agents themselves are assumed to provide a learning 

feedback. 

 

The generality and robustness of multiagent reinforcement learning algorithms has 

grabbed the attention for its wide usage and these techniques have been applicable in 

both stationary and non-stationary environments.  

 
5.1 Supervised Learning 
 
The machine learning technique has the ability to learn a function that are based on input 

output pairs which maps an input to an output .It deduces a function from labeled training 

data consisting of a set of training example. Considering each example which can be 

expressed as a pair consisting of an input and a desired output is one of the main 

characteristics of Supervised learning. Algorithms based on Supervised learning examine 

the training data and produces an inferred function, with the help of which new examples 

can be mapped. The perfect class labels for critical and unknown instances can be 

determined by an algorithm during the optimal scenario. This can be attained when the 

learning algorithm generalizes from the training data to unknown situations in a 

"reasonable" way. There are various complexities that are encountered when multiple 

agents interact with each other, therefore direct application of supervised learning 

algorithms are difficult because they typically assume a critic that can confer the agents 
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with the “correct” behavior [5] for a particular specific situation. Supervised learning 

method was used by Sniezynski [9] for the fish bank game. The interaction in 

heterogeneous agents’ environment  are improved by Garland and Alterman [10] with the 

use of learning coordinated procedures. William [11] and his team delineated inductive 

learning methods to understand individual’s attitude’s  in the area of semantic webs. A 

rule induction technique was applied by Gehrke and Wojtusiak [12], in their research for 

route planning. Learning abilities are incorporated into BDI model by Airiau et al. [13], in 

which decision tree learning is utilized to enhance plan applicability testing. Table 1 shows  

few important characteristics of above supervised learners compared to the learning 

aspects [5] 

 Table 1:  Supervised learners compared to learning aspects [5] 

 Cen/Decentralized Coordination Learning Final Goal 

Sniezynski [9] Centralized No 2-Agents Selfish 

Garland and 
Alterman [10] 

De-Centralized Yes All- Agents Cooperative 

Williams [11] De-Centralized Yes All- Agents Cooperative 

Gehrke and 
Wojtusiak [12] 

De-Centralized Yes All- Agents Cooperative 

Airiau et al. [13] De-Centralized Yes All- Agents Cooperative 

 
5.2 Unsupervised Learning 
 
In this case, there is no explicit concepts are given. Many researchers have already 

reviewed the unsupervised learning algorithms applied to multi agent-based systems and 

conclude that, this is not a suitable technique for multi agent applications. Main approach 

in multi agent is to increase the overall performance, but unsupervised learning is 

supposed to be an aimless approach for this application. Hence minimal research has been 

witnessed in this area. However, unsupervised learning algorithms were used by the 

researchers to find a solution to the auxiliary issues that help agent through its learning 

[5, 14,15]. 

 

5.3 Reinforcement Learning 

Reinforcement learning stands different from the other two methods mentioned above, 

in a way that it is a method in which the paradigm of the agent is matched exactly whereas 

for the supervised and unsupervised learning the learner must be provided with healthy 

data. Autonomous agent that has no prior knowledge behaviour of the system or of the 

environment is assigned by reinforcement learning by gradually enhancing its 

performance based on given returns as the learning task is carried out [15]. Hence, a huge  

percentage of people working in this area used reinforcement learning algorithms. As 

stated in [5], the literature available for reinforcement learning algorithms of multi-agent 

systems can be divided into two different subsets: 1) Estimating value functions-based 

methods; and 2) Stochastic search-based methods in which behaviours are learnt directly 

by the agents without involving value functions and it focusses on evolutionary 

computation [5]. Single and multiple agents’ algorithms [5] are available for learning 

methods based on estimate value functions. A Markov decision Process also known as 

MDP is known to the environment in reinforcement learning as most of reinforcement 

learning algorithms uses dynamic programming approach. There are many algorithms 



based on reinforcements learning. Comparison of various reinforcement learning 

algorithms are [5]. 

 

Table 2: Comparison of various Reinforcement learning algorithms [5] 

Researchers Cen/Decentralized  Coordination 
b/w agents 

Learning Final Goal 

Bowling and 
Veloso [22] 

 D  Yes All-Agents Cooperative 
and 
Competitive 

Barto et al. 
[19] 

C  No All-Agents Selfish 

Sutton [20] C  No All-Agents Selfish 

Moore and 
Atkeson [21] 

C  No All-Agents Selfish 

      

Greenwald 
and Hall [23] 

D  Yes All-Agents Competive 

Kononen [24] D  Yes One-Agent Cooperative 

Lagoudakis 
and Parr [25] 

C  No One-Agent Selfish 

McGlohon 
and Sen [26] 

D  Yes All-Agents Cooperative 

Qi and Sun 
[27] 

D  Yes All-Agents Cooperative 

Puterman [17] C  No All-Agents Selfish 

Watkins and 
Dayan [18] 

C  No All-Agents Selfish 

Bertsekas [16] C  No All-Agents Selfish 

 

Table 3: Standard algorithms for Reinforcement learning [5] 

 
Algorithm Description Model Policy Action 

Space 
State 
Space 

Operator 

Monte 
Carlo 

Every visit to 
monte Carlo 

Model 
Free 

Off Discrete Discrete Sample-
Means 

Q Learning State Action 
reward state  

Model 
Free 

Off Discrete Discrete Q-Value 

SARSA State action 
reward state 
action 

Model 
Free 

On Discrete Discrete Q-Value 

 

5.3.1 Monte-Carlo Method 

Monte–Carlo Method [32] obtains value function producing the episode repeatedly and 

it keeps a note about the average return at each state or each state action-pair. Thus, the 

calculation of the state value function is carried out as follows: 

 

                                      𝑉𝜋
𝑀𝐶(𝑠) = lim

𝑖→+∞
𝐸[𝑟𝑖(𝑠𝑡)|𝑠𝑡 = 𝑠, 𝜋]      (1) 

Where ri ( st ) symbolizes observed returns at state st in episode ith. Similarly, the value 

function of state action pair is given as follows: 



 

   𝑄𝜋
𝑀𝐶(𝑠, 𝑎) =  lim

𝑖→+∞
𝐸[𝑟𝑖(𝑠𝑡, 𝑎𝑡)| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋]    (2) 

 

MC method is known as model free as prior knowledge about transitional probabilities is 

not mandatory in this method. 

However, for convergence to take places this method is based on two vital assumptions 

[32] 

1) it has a large number of episodes and  

2) visiting every state and every action should be carried out for a large number of times. 

Making this ‘’exploration’’ a feasible one, usage of e-greedy strategy in policy 

improvement should be made: 

 

 

𝑅𝑆: 𝜋 → 𝜋′ = 𝜓′(𝑠) =    1 − 𝜖 +
𝜖

|ΔΠ(𝑠)|
,𝑎𝑖 = 𝑎𝑗Λ𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄Π(𝑠. 𝑎𝑘)                 (3)         

 

      
𝜖

|ΔΠ(𝑠)
, ∀𝑎𝑖 ∈ ∆𝜋 ∧ 𝑎𝑖 ≠ 𝑎𝑗  

                 

Where   |  π (s)|   depicts  number of candidate action taken in state s and 0<ϵ<1. Usually 

the division of MC algorithm are made into two groups: on-policy and off-policy. In on-

policy method application of policy π is carried out for both evaluation and exploration 

and purpose. Therefore, the policy π should be stochastic or soft. But off-policy uses 

different policy  π’≠ π  in order to produce the episodes and hence π can be deterministic. 

Off-policy method is more attractive due to its simplicity, but the stability of on-policy 

method is more when dealing with continuous state space problems and when applying 

it together with function approximator such as neural networks. 

 
5.3.2  Temporal Difference Method 

TD (Temporal Difference) is a model free approach that learns from its experiences[32]. 

This method in order to make an update doesn’t wait for the episode to get over. Every 

step is updated within the episode by leveraging 1-step Bellman equation and therefore 

a faster convergence is possibly feasible for this method: 

 

  𝑈1: 𝑉𝑖(𝑠𝑡) ←a𝑉𝑖−1(𝑠𝑡) + (1 − 𝛼)(𝑟𝑖+1 + 𝛾𝑉𝑖−1(𝑠𝑡+1)          (4) 

 

Where α is a step size parameter and 0< α <1. It makes use of previously calculated values 

V i-1 for updating of the current one’s V i, which is known as bootstrapping method, which 

has the advantage of learning fast over the the non-bootstrapping methods in most of the 



cases. TD learning is also divided into two major categories: On- policy TD learning (Sarsa) 

and Off-policy TD learning(Q-learning). In Sarsa algorithm estimates value function of 

state action pair based on: 

 𝑈2: 𝑄𝑖(𝑠𝑖, 𝑎𝑡) ← 𝛼𝑄𝑖−1(𝑠𝑡,𝑎𝑡) + (1 − 𝛼)(𝑟𝑡+1 + 𝛾𝑄𝑖−1(𝑠𝑡+1, 𝑎𝑡+1)      (5) 

 

On the other hand, single step optimality bellman equation is used by Q-learning to carry 

out the update, i.e., direct approximation of value function of optimal policy is done by Q-

learning: 

𝑈3: 𝑄𝑖(𝑠𝑡, 𝑎𝑡) ← 𝛼𝑄𝑖−1(𝑠𝑡,𝑎𝑡) + (1 − 𝛼)(𝑟𝑡+1 + 𝛾 max
𝑎𝑡+1

𝑗
𝑄𝑖−1 (𝑠𝑖+1, 𝑎𝑡+1

𝑗
) )                (6) 

It can be noticed that the operator max in update rule substitutes for a deterministic policy 

and this strongly explains why Q-learning is off-policy. 

Tabular structure is used by these two methods in order to store the value function of 

each state or each function pair. However, for solving complicated problems which 

consists of a number of stages it becomes insufficient due to lack of memory. Therefore, 

actor-critic (AC) method is introduced to overcome these limitations. AC includes two 

memory structure for an agent [32]: actor structure is utilized for selection of appropriate 

action in accordance to the observed state and transfer the same to critic structure for 

evaluation. Critic structure uses the following equation as a TD error to decide the future 

tendency of a selected action. 

 

   𝛿(𝑎𝑡) = 𝛽(𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1)) − (1 − 𝛽)𝑉(𝑆𝑡)        (7) 

 
 
5.3.3 Q learning 
 
In order to learn agent systems or sub-systems, Q learning is widely used reinforcement 

learning based approach. The final objective of a Q learning is to evaluate a state of action 

that is so called policy that results in maximum utility for the agent. After one action is 

executed there will be reward for each policy that is generated. In simple word, the 

environment is explored in which a reward is observed by experimenting the different 

actions such that the agent learns in the process. In a finite markov decision process, an 

optimal action selection can be identified by Q learning provided indefinite time for 

exploration is given and a party random policy. The result of Q-learning, i.e., the policy, 

may be observed as a table in which a numeric value is assigned to each state–action pair 

(s, a), that gives an estimate of the (possibly long-term) reward to be received when 

implementing a in s. After receiving a reward, an agent performs the required numerical 

value updating of the state–action pair, based on the reward and on the evaluated best 

reward to be obtained in the new state. Now with time, the agent is capable of enhancing 

its estimates of the rewards to be obtained for all state–action pairs. The reader can find 

the Q learning algorithm in more details [7,8] 

 



There are some advantages of Q-learning which includes 1) Absolute convergence toward 

the optimum 2) Natural applicability to agent systems because of the coupling of learning 

and exploration. However, it has drawbacks that includes  1) Designing numerical suitable 

reward function can be a nontrivial task. 2) Convergence to optimal and 3) No explanation 

is given for any action preferences in learning the result.  

 

6. Applications and Future work 
 
One major application in this area is development of an algorithm which can perform very 

well in airport ground handling management system. In this communication the ground 

handling fleet management problem [28] at airports is taken into consideration with the 

objective of enhancing aircraft service at arrival and departure terminals while we 

consider the ground cost issues. After collaborative discussion between ground 

management, airport authorities and airline, a machine learning technique will address to 

solve this multi agent-based problem. 

 

Another example involves prediction in the stock market. Portfolio management in the 

stock trading [29] results in a successful handling and presents a theory-based foundation 

for a stock trading system. The overall portfolio management tasks include extracting the 

user profiles, collecting information on initial portfolio position of user, on behalf of the 

user it observes the environment and suggesting better decisions, so the investment goals 

of the user meets the requirements , and making decision suggestions to meet the 

investment goals of the user. Based on the requirement analysis, Davis [29] presented a 

framework for a Multi-Agent System for Stock Trading (MASST). The primary issues 

addressed , it provides with different  information sources and  by interacting the  agents 

and providing decision-making for investors in the stock market. The candidate agents are 

identified and also the tasks that the agents perform. Agent interaction  and exchange of 

information and knowledge between agent also  has been described.  

 

7. Conclusion 
 
This research addressed some machine learning techniques for agents and multi agent 

systems [5]. Furthermore, we also have provided two examples for reader as an 

application of multi agent-based systems that are being developed at Ryerson University, 

Toronto, Canada. While machine learning methods applied to multi agent systems still 

require more attention to prove their practicality. ML  for multi agents is still a relatively  

new research area, and there are lot of open issues that require further development, 

some of them have already been mentioned.  
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